Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(14): 17461-17473, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556803

RESUMO

The phosphate lithium-ion conductor Li1.5Al0.5Ti1.5(PO4)3 (LATP) is an economically attractive solid electrolyte for the fabrication of safe and robust solid-state batteries, but high sintering temperatures pose a material engineering challenge for the fabrication of cell components. In particular, the high surface roughness of composite cathodes resulting from enhanced crystal growth is detrimental to their integration into cells with practical energy density. In this work, we demonstrate that efficient free-standing ceramic cathodes of LATP and LiFePO4 (LFP) can be produced by using a scalable tape casting process. This is achieved by adding 5 wt % of Li2WO4 (LWO) to the casting slurry and optimizing the fabrication process. LWO lowers the sintering temperature without affecting the phase composition of the materials, resulting in mechanically stable, electronically conductive, and free-standing cathodes with a smooth, homogeneous surface. The optimized cathode microstructure enables the deposition of a thin polymer separator attached to the Li metal anode to produce a cell with good volumetric and gravimetric energy densities of 289 Wh dm-3 and 180 Wh kg-1, respectively, on the cell level and Coulombic efficiency above 99% after 30 cycles at 30 °C.

2.
RSC Adv ; 13(26): 17923-17934, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323432

RESUMO

NaxFe1/2Mn1/2O2 (x = 1 and 2/3) layered oxides were prepared by an improved solid-state synthesis method. The XRD analysis confirmed the high purity of these samples. The Rietveld refinement of the crystalline structure illustrated that the prepared materials crystallize in a hexagonal system in the R3̄m space group with the P3 structure for x = 1 and in a rhombohedral system with the P63/mmc space group and P2 structure type for x = 2/3. The vibrational study undertaken using IR and Raman spectroscopy techniques yielded the existence of an MO6 group. Their dielectric properties were determined in frequency range 0.1-107 Hz for a temperature range 333-453 K. The permittivity results indicated the presence of two types of polarization, namely dipolar polarization and space charge polarization. The frequency dependence of the conductivity was interpreted in terms of Jonscher's law. The DC conductivity followed the Arrhenius laws either at low or at high temperatures. The temperature dependence of the power law exponent which corresponds to the grain (s2) suggested that the conduction of the P3-NaFe1/2Mn1/2O2 compound is ascribed to the CBH model, while P2-Na2/3Fe1/2Mn1/2O2 can be attributed to the OLPT model.

3.
Adv Sci (Weinh) ; 10(22): e2301091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202659

RESUMO

Conventional sodium-based layered oxide cathodes are extremely air sensitive and possess poor electrochemical performance along with safety concerns when operating at high voltage. The polyanion phosphate, Na3 V2 (PO4 )3 stands out as an excellent candidate due to its high nominal voltage, ambient air stability, and long cycle life. The caveat is that Na3 V2 (PO4 )3 can only exhibit reversible capacities in the range of 100 mAh g-1 , 20% below its theoretical capacity. Here, the synthesis and characterizations are reported for the first time of the sodium-rich vanadium oxyfluorophosphate, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O, a tailored derivative compound of Na3 V2 (PO4 )3 , with extensive electrochemical and structural analyses. Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O delivers an initial reversible capacity of 117 mAh g-1 between 2.5 and 4.5 V under the 1C rate at room temperature, with 85% capacity retention after 900 cycles. The cycling stability is further improved when the material is cycled at 50 °C within 2.8-4.3 V for 100 cycles. When paired with a presodiated hard carbon, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O cycled with a capacity retention of 85% after 500 cycles. Cosubstitution of the transition metal and fluorine in Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O as well as the sodium-rich structure are the major factors behind the improvement of specific capacity and cycling stability, which paves the way for this cathode in sodium-ion batteries.

4.
RSC Adv ; 13(15): 10036-10050, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006356

RESUMO

Along with morphological and structural studies, the temperature and frequency dependence of the electrical and dielectric properties of the CH3NH3HgCl3 (MATM) compound was investigated and analyzed. SEM/EDS and XRPD analyses proved the purity, composition, and perovskite structure of the MATM. DSC analysis reveals the existence of an order-disorder phase transition of a first-order type at about 342 ± 2 K and 320 ± 1 K (heating and cooling, respectively), attributed to the disorder of [CH3NH3]+ ions. The overall results of the electrical study provide arguments for the ferroelectric nature of this compound and aim to broaden the current knowledge on the thermally activated conduction mechanisms of the studied compound via impedance spectroscopy. The electrical investigations have shown the dominant transport mechanisms in different frequency and temperature ranges, proposing the CBH model in the ferroelectric phase and the NSPT model in the paraelectric phase. The temperature dependence of the dielectric study reveals the classic ferroelectric nature of the MATM. As for the frequency dependence, it correlates the frequency-dispersive dielectric spectra with the conduction mechanisms and their relaxation processes.

5.
Ir J Med Sci ; 192(1): 403-407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35338445

RESUMO

BACKGROUND: Meningitis is one of the most dangerous infection affecting children. The need for rapid and accurate diagnosis is mandatory for improving the outcome. AIM OF THE WORK: To evaluate the role of multiplex polymerase chain reaction (PCR) in diagnosis of meningitis either bacterial or viral and to detect its accuracy. PATIENTS AND METHODS: A cross-sectional study was carried out in University Children Hospital, Faculty of Medicine, between November 2019 and September 2020. The study was approved by the Ethics Review Board of Faculty of Medicine, Assiut University, and informed written consent was obtained. The committee's reference number is 17200161. Clinicaltrails.gov ID: NCT03387969. Forty-eight children aged 2 to 18 years with meningitis were included. Detailed history and examination, blood glucose level at time of admission prior to lumbar puncture, and multiplex PCR in cerebrospinal fluid (CSF) were evaluated. RESULTS: The mean age of children was 3.27 ± 1.27 years. Thirty-five (72.9%) cases were bacterial meningitis while 13 (27.1%) cases were viral meningitis. Multiplex PCR had 94% sensitivity and 100% specificity for diagnosis of bacterial meningitis. CONCLUSION: Multiplex PCR may help in diagnosis and differentiation of bacterial and viral meningitis with accurate and rapid results.


Assuntos
Meningites Bacterianas , Meningite Viral , Criança , Humanos , Pré-Escolar , Reação em Cadeia da Polimerase Multiplex/métodos , Estudos Transversais , Meningites Bacterianas/diagnóstico , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/microbiologia , Bactérias , Meningite Viral/diagnóstico , Meningite Viral/líquido cefalorraquidiano , Sensibilidade e Especificidade
6.
RSC Adv ; 12(3): 1563-1570, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425152

RESUMO

The compound NaCu0.2Fe0.3Mn0.5O2 was synthesized using a solid-state method and it crystallized in a hexagonal system with a R3̄m space group in an O3-type phase. The optical properties were measured using UV-Vis absorption spectrometry to determine the absorption coefficient α and the optical band gap E g. The optical band gap energy of this sample is 2.45 eV, which indicates that it has semiconductor characteristics. Furthermore, the electrical and dielectric properties of the material were investigated using complex impedance spectroscopy between 10-1 Hz and 106 Hz at various temperatures (333-453 K). The permittivity results prove that there are two types of polarization, dipolar polarization and space charge polarization. The Nyquist diagrams show the contribution of the effects of the grain, grain boundary, and electrode properties. The frequency dependence of the conductivity was interpreted in terms of Jonscher's law. The DC conductivity follows both the Mott and Arrhenius laws at low and high temperature, respectively. The temperature dependence of the power law exponent(s) suggests that the overlapping large polaron tunneling (OLPT) model is the dominant transport process in this material. The optimum hopping length of the polaron (4 Å) is large compared with the interatomic spacing (2.384 Å for Na-O and 2.011 Å for Cu, Fe, Mn-O).

7.
Acta Neurol Taiwan ; 31(2): 61-71, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35266132

RESUMO

BACKGROUND: Meningitis is one of the most dangerous infection affecting children. The need for rapid and accurate diagnosis is mandatory for improving the outcome. AIM OF THE WORK: to evaluate the role of multiplex polymerase chain reaction (PCR), cerebrospinal fluid (CSF)-C-reactive protein (CRP) and serum procalcitonin (PCT) in diagnosis of meningitis and to detect its accuracy. PATIENTS AND METHODS: A cross-sectional study was carried out in University Children hospital, Faculty of Medicine, between November 2019 and September 2020. The study was approved by the Ethics Review Board of Faculty of Medicine, Assiut University, and informed written consent was obtained. The committee's reference number is 17200161. CLINICALTRIALS: gov ID: NCT03387969. 48 Children aged 2 to 18 years with meningitis were included. Detailed history and examination. Blood glucose level at time of admission prior to lumbar puncture, serum CRP level, serum PCT, CSF-CRP level and Multiplex PCR were evaluated. FUNDING: The study was supported by Grant Office of Faculty of Medicine, Assiut University with grant NO. 2018-01-04-006-R2. RESULTS: The mean age of children was 3.27 plus or minus 1.27 years. 35 (72.9%) cases were bacterial meningitis, while 13 (27.1%) cases were viral meningitis. Patients with bacterial meningitis had significantly higher serum CRP, serum PCT and higher CSF-CRP and significantly lower CSF/blood glucose compared to viral meningitis. Multiplex PCR had 94% sensitivity and 100% specificity for diagnosis of bacterial and viral meningitis. CONCLUSION: CSF-CRP, CSF/blood glucose, PCT and Multiplex-PCR may help in diagnosis and differentiation of bacterial and viral meningitis.


Assuntos
Meningites Bacterianas , Meningite Viral , Adolescente , Proteína C-Reativa/líquido cefalorraquidiano , Calcitonina/líquido cefalorraquidiano , Criança , Pré-Escolar , Estudos Transversais , Humanos , Lactente , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/diagnóstico , Meningite Viral/líquido cefalorraquidiano , Meningite Viral/diagnóstico , Reação em Cadeia da Polimerase Multiplex , Pró-Calcitonina
9.
R Soc Open Sci ; 7(10): 201210, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204477

RESUMO

Phosphorene is a new two-dimensional material that has recently attracted much attention owing to its fascinating electrical, optical, thermal and chemical properties. Here, we report on high-quality exfoliation of black phosphorus nanosheets, with controllable size produced in large quantities by liquid-phase exfoliation using N-methyl-2-pyrrolidone (NMP) as a solvent under ambient conditions. The as-synthesized few layers show a great potential for solar energy conversion based on the optical results shown in this work.

10.
J Phys Chem A ; 124(39): 7869-7880, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894948

RESUMO

α-Sb2O3 (senarmontite), ß-Sb2O3 (valentinite), and α-TeO2 (paratellurite) are compounds with pronounced stereochemically active Sb and Te lone pairs. The vibrational and lattice properties of each have been previously studied but often lead to incomplete or unreliable results due to modes being inactive in infrared or Raman spectroscopy. Here, we present a study of the relationship between bonding and lattice dynamics of these compounds. Mössbauer spectroscopy is used to study the structure of Sb in α-Sb2O3 and ß-Sb2O3, whereas the vibrational modes of Sb and Te for each oxide are investigated using nuclear inelastic scattering, and further information on O vibrational modes is obtained using inelastic neutron scattering. Additionally, vibrational frequencies obtained by density functional theory (DFT) calculations are compared with experimental results in order to assess the validity of the utilized functional. Good agreement was found between DFT-calculated and experimental density of phonon states with a 7% scaling factor. The Sb-O-Sb wagging mode of α-Sb2O3 whose frequency was not clear in most previous studies is experimentally observed for the first time at ∼340 cm-1. Softer lattice vibrational modes occur in orthorhombic ß-Sb2O3 compared to cubic α-Sb2O3, indicating that the antimony bonds are weakened upon transforming from the molecular α phase to the layer-chained ß structure. The resulting vibrational entropy increase of 0.45 ± 0.1 kB/Sb2O3 at 880 K accounts for about half of the α-ß transition entropy. The comparison of experimental and theoretical approaches presented here provides a detailed picture of the lattice dynamics in these oxides beyond the zone center and shows that the accuracy of DFT is sufficient for future calculations of similar material structures.

11.
ACS Appl Mater Interfaces ; 12(37): 41765-41775, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32809791

RESUMO

Sodium-ion batteries (NaIBs) are increasingly being envisioned for grid-scale energy-storage systems because of cost advantages. However, implementation of this vision has been challenged by the low-energy densities delivered by most NaIB cathodes. Toward addressing this challenge, the authors report the synthesis and characterization of a new iron-doped Na3Fe0.3V1.7O(PO4)2F2 cathode using a novel facile hydrothermal route. The synthesized material was characterized using scanning electron microscopy, X-ray diffraction, and Mössbauer spectroscopy techniques. The obtained discharge capacity in the half-cell configuration lies from 119 to 125 to 130 mA h/g at C/10 while tested using three different electrolyte formulations, dimethyl carbonate-ethylene carbonate (EC)-propylene carbonate (PC), diethyl carbonate-EC, and EC-PC, respectively. The synthesized cathodes were also evaluated in full-cell configurations, which delivered an initial discharge capacity of 80 mA h/g with NaTi2(PO4)3MWCNT as the anode. Ionic diffusivity and interfacial charge transfer kinetics were also evaluated as a function of temperature and sodium concentration, which revealed that electrochemical rate performances in this material were limited by charge-transfer kinetics. To understand the heat generation mechanism of the Na/Na3Fe0.3V1.7O(PO4)2F2 half-cell during charge and discharge processes, an electrochemical isothermal calorimetry measurement was carried out at different current rates for two different temperatures (25 and 45 °C). The results showed that the amount of heat generated was strongly affected by the operating charge/discharge state, C-rate, and temperature. Overall, this work provides a new synthesis route for the development of iron-doped Na3Fe0.3V1.7O(PO4)2F2-based high-performance sodium cathode materials aimed at providing a viable pathway for the development and deployment of large-scale energy-storage based on sodium battery systems.

12.
RSC Adv ; 10(46): 27456-27473, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516920

RESUMO

The disodium cobalt(ii) orthosilicate material (NCS) has been synthesized using improved solid-state (NCS-SS) and co-precipitation (NCS-CP) methods of synthesis. The Rietveld refinement of the XRD pattern of Na2CoSiO4 has demonstrated an orthorhombic crystal system with the space groups Pna21 and Pbca for NCS-SS and NCS-CP respectively. The elemental mapping of microstructures by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) showed the porous morphology and the homogenous particles of the Na2CoSiO4 powders. Their dielectric properties were measured in the frequency and temperature ranges of 0.1-106 Hz and 383-613 K respectively. Different dielectric relaxation phenomena associated with the Na+-ion migration through different paths were displayed in relation with the temperature and frequency. The decrease and increase in the dielectric properties were found to be dependent on the formation of short-range ordered structure formed after the migration of Na+-ions. In the present work, an attempt has been made to study the relation between the structural properties and the dielectric process. Thus, interesting insights into the transport behavior of Na+-ions in different chemical environments were obtained. This in turn provides an effective procedure to probe the relationship between the diffusion pathway of Na+-ions and the dielectric response.

13.
Materials (Basel) ; 12(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052287

RESUMO

Ba2Mg0.4Co1.6Fe12O22 was prepared in powder form by sonochemical co-precipitation and examined by X-ray diffraction, Mössbauer spectroscopy and magnetization measurements. Careful XRD data analyses revealed the Y-type hexaferrite structure as an almost pure phase with a very small amount of CoFe2O4 as an impurity phase (about 1.4%). No substantial changes were observed in the unit cell parameters of Ba2Mg0.4Co1.6Fe12O22 in comparison with the unsubstituted compound. The Mössbauer parameters for Ba2Mg0.4Co1.6Fe12O22 were close to those previously found (within the limits of uncertainty) for undoped Ba2Mg2Fe12O22. Isomer shifts (0.27-0.38 mm/s) typical for high-spin Fe3+ in various environments were evaluated and no ferrous Fe2+ form was observed. However, despite the indicated lack of changes in the iron oxidation state, the cationic substitution resulted in a significant increase in the magnetization and in a modification of the thermomagnetic curves. The magnetization values at 50 kOe were 34.5 emu/g at 4.2 K and 30.5 emu/g at 300 K. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves were measured in magnetic fields of 50 Oe, 100 Oe, 500 Oe and 1000 Oe, and revealed the presence of two magnetic phase transitions. Both transitions are shifted to higher temperatures compared to the undoped compound, while the ferrimagnetic arrangement at room temperature is transformed to a helical spin order at about 195 K, which is considered to be a prerequisite for the material to exhibit multiferroic properties.

14.
RSC Adv ; 9(12): 6785-6792, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35518454

RESUMO

Li2M(WO4)2 (M = Co, Cu or Ni) materials have been synthesized using the solid-state reaction method. X-ray diffraction measurements confirmed the single phase of the synthesized compounds in the triclinic crystal system (space group P1̄). The SEM analyses revealed nearly spherical morphology with the particle size in the range of 1-10 µm. The IR spectra confirm the presence of all modes of WO4 2-. The impedance spectroscopy measurements showed the presence of grain boundaries and allow determination of the conductivity of the synthesized materials at room temperature. As positive electrode materials for lithium ion batteries, Li2M(WO4)2 (M = Co, Cu or Ni) cathode materials deliver initial discharge capacities of 31, 33 and 30 mA h g-1 for cobalt, nickel, and copper, respectively.

15.
ACS Appl Mater Interfaces ; 10(40): 34202-34211, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30216721

RESUMO

A hydrothermal synthesis route was used to synthesize iron(III) phosphate hydroxide hydrate-carbon nanotube composites. Carbon nanotubes (CNT) were mixed in solution with Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) precursors for one-pot hydrothermal reaction leading to the FPHH/CNT composite. This produces a highly electronic conductive material to be used as a cathode material for Li-ion battery. The galvanostatic cycling analysis shows that the material delivers a specific capacity of 160 mAh g-1 at 0.2 C (0.2 Li per fu in 1 h), slightly decreasing with increasing current density. A high charge-discharge cyclability is observed, showing that a capacity of 120 mAh g-1 at 1 C is maintained after 500 cycles. This may be attributed to the microspherical morphology of the particles and electronic percolation due to CNT but also to the unusual insertion mechanism resulting from the peculiar structure of FPHH formed by chains of partially occupied FeO6 octahedra connected by PO4 tetrahedra. The mechanism of the first discharge-charge cycle was investigated by combining operando X-ray diffraction and 57Fe Mössbauer spectroscopy. FPHH undergoes a monophasic reaction with up to 10% volume changes based on the Fe3+/Fe2+ redox process. However, the variations of the FPHH lattice parameters and the 57Fe quadrupole splitting distributions during the Li insertion-deinsertion process show a two-step behavior. We propose that such mechanism could be due to the existence of different types of vacant sites in FPHH, including vacant "octahedral" sites (Fe vacancies) that improve diffusion of Li by connecting the one-dimensional channels.

16.
Materials (Basel) ; 11(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941820

RESUMO

The performance of electrode materials in lithium-ion (Li-ion), sodium-ion (Na-ion) and related batteries depends not only on their chemical composition but also on their microstructure. The choice of a synthesis method is therefore of paramount importance. Amongst the wide variety of synthesis or shaping routes reported for an ever-increasing panel of compositions, spray-drying stands out as a versatile tool offering demonstrated potential for up-scaling to industrial quantities. In this review, we provide an overview of the rapidly increasing literature including both spray-drying of solutions and spray-drying of suspensions. We focus, in particular, on the chemical aspects of the formulation of the solution/suspension to be spray-dried. We also consider the post-processing of the spray-dried precursors and the resulting morphologies of granules. The review references more than 300 publications in tables where entries are listed based on final compound composition, starting materials, sources of carbon etc.

17.
Inorg Chem ; 55(12): 5924-34, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27258790

RESUMO

Copper hexacyanoferrate, Cu(II)[Fe(III)(CN)6]2/3·nH2O, was synthesized, and varied amounts of K(+) ions were inserted via reduction by K2S2O3 (aq). Ideally, the reaction can be written as Cu(II)[Fe(III)(CN)6]2/3·nH2O + 2x/3K(+) + 2x/3e(-) ↔ K2x/3Cu(II)[Fe(II)xFe(III)1-x(CN)6]2/3·nH2O. Infrared, Raman, and Mössbauer spectroscopy studies show that Fe(III) is continuously reduced to Fe(II) with increasing x, accompanied by a decrease of the a-axis of the cubic Fm3̅m unit cell. Elemental analysis of K by inductively coupled plasma shows that the insertion only begins when a significant fraction, ∼20% of the Fe(III), has already been reduced. Thermogravimetric analysis shows a fast exchange of water with ambient atmosphere and a total weight loss of ∼26 wt % upon heating to 180 °C, above which the structure starts to decompose. The crystal structures of Cu(II)[Fe(III)(CN)6]2/3·nH2O and K2/3Cu[Fe(CN)6]2/3·nH2O were refined using synchrotron X-ray powder diffraction data. In both, one-third of the Fe(CN)6 groups are vacant, and the octahedron around Cu(II) is completed by water molecules. In the two structures, difference Fourier maps reveal three additional zeolitic water sites (8c, 32f, and 48g) in the center of the cavities formed by the -Cu-N-C-Fe- framework. The K-containing compound shows an increased electron density at two of these sites (32f and 48g), indicating them to be the preferred positions for the K(+) ions.

18.
Angew Chem Int Ed Engl ; 55(16): 5090-5, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26989882

RESUMO

We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not require heavy treatments (such as nanoscale tailoring, sophisticated textures, or coating) to obtain long cycle life with current density as high as 9 A g(-1) for hundreds of charge-discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M(x)(NCN)y with M=Mn, Cr, Zn can cycle successfully versus lithium and sodium. Their electrochemical activity and performance open the way to the design of a novel family of anode materials.

19.
Chem Pharm Bull (Tokyo) ; 55(8): 1264-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17666857

RESUMO

The novel natural product juncutol (1), 1,4,7-trimethyl-8,9-dihydro-4H-cyclopenta[def]phenanthrene-2,6-diol, along with the three related metabolites juncusol (2), dehydrojuncusol (3), and 6-hydroxymethyl-1-methyl-5-vinyl-9,10-dihydrophenanthrene-2-ol (4), were isolated from the rhizomes of Juncus acutus L. (Juncaceae) growing in Egypt. The structural identity of 1 was determined on the basis of spectroscopic analyses, including 2D NMR spectroscopy. The inhibitory effect of these natural products on the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide-stimulated RAW264.7 macrophage cells was determined for the first time. The unprecedented symmetrical compound juncutol (1) was found to be the most potent inhibitor against the induction of the proinflammatory iNOS protein.


Assuntos
Inibidores Enzimáticos , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fenantrenos/química , Fenantrenos/farmacologia , Plantas/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Egito , Eletroforese em Gel de Poliacrilamida , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Espectroscopia de Ressonância Magnética , Camundongos , Fenantrenos/isolamento & purificação , Raízes de Plantas/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...