Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 8654-8665, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434839

RESUMO

The oil well cementing job is the operation in which a cement paste is pumped to fill the annulus behind the casing. Inclusion of nanomaterials in oil well cement results in improving the cement properties. This paper provides a comprehensive overview of incorporating nanosilica into oil well cement, addressing various aspects of the nanosilica manufacturing process, dispersion challenges, the impact on cement hydration and properties, as well as the operational challenges. The addition of nanosilica is found to enhance cement properties such as hydration rate, compressive strength at low temperatures, and resistance to deterioration at high temperatures. However, challenges arise, including increased viscosity and the need for higher water content. Dispersion of nanosilica into cement slurry remains a difficulty, compounded by the high manufacturing cost, limiting its practical application. The paper recommends further research to improve nanosilica dispersion, explore cost-effective raw materials, and overcome operational challenges for broader utilization in oil well cementing.

2.
ACS Omega ; 9(9): 9961-9973, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463338

RESUMO

Foam cement is a versatile cementing material that has found numerous applications in the oil and gas industry. As research continues to advance and improve the properties of foam cement, it is likely that we will see an increased use of this material in the years to come. This review aims to summarize the current state of the art and the latest developments in the utilization of foam cement in oil fields. The study focuses on the key benefits of foam cement, including its light weight, excellent flow properties, ability to maintain its structural integrity over time, and high compressive strength. It also examines its various applications in oil field operations, such as cementing against fragile formations, well abandonment, zonal isolation, cementing offshore wells, and well remedial cementing. Furthermore, the paper evaluates the various factors that influence the performance of foam cement, such as the mixing design, foam structure, and stability. In addition, the methods for evaluating the foamed cementing job and the integrity of the formed cement sheath are also presented. The review also highlights the current challenges and limitations of foam cement technology that should be considered when using foamed cement in oil field applications and discusses the future directions for its development and optimization. This review provides a comprehensive overview of the applications of foam cement in oil fields and will be of great interest to engineers, researchers, and practitioners in the oil and gas industry.

3.
ACS Omega ; 8(33): 30139-30144, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636924

RESUMO

In the oil and gas industry, cementing is a very important process to maintain the stability of the well. The cement can provide an effective plug against fluid movement and at the same time supports the casing and formations. Based on the operation conditions, different types of additives are used to make the cement slurry, and incorporation of a new additive considerably affects all properties of the cement slurry and the solidified sheath. In this work, lab experiments were performed to investigate alteration of the Saudi Class G cement properties after incorporation of olive waste into the slurry, and the possibility of replacing the commercial retarder with olive waste was also studied in this work. Five samples with different olive waste content were prepared, and their rheological characteristics, thickening time, mechanical properties, and permeability were evaluated after 24 h of curing at 95 °C. The results indicated that olive waste could replace the use of a commercial retarder. The incorporation of olive waste did not affect the cement plastic viscosity, while the yield point, 10 s, and 10 min gel strengths of the cement were considerably increased with the increase in the olive waste content. The cement compressive strength was also increased with the incorporation of olive waste of a maximum of 0.375%, and the permeability decreased with the addition of a maximum of 0.25% olive waste.

4.
ACS Omega ; 8(9): 8773-8778, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910970

RESUMO

Casing cementing is one of the most crucial operations in the oil well drilling process since it determines the durability and stability of the well throughout its life. Different additives have been mixed into the oil well cement slurry to improve the properties of both the cement slurry and the solidified cement sheath. Graphite is a waste material with a huge potential to be utilized in cementing to improve the properties of the oil well cement and reduce the graphite waste content in the environment. This study intends to analyze the effect of graphite on alteration in properties of the cement compressive and tensile strength, Poisson's ratio, Young's modulus, porosity, and permeability for three days of curing. Based on the trend of the properties during the three days of curing, equations were established to describe the future change in cement properties with time. Two formulas of cement, the base (with no graphite) and graphite-based (with 0.2% by weight of cement graphite) were prepared in this study. The results showed that the graphite successfully increased the compressive strength, tensile strength, and Poisson's ratio of the cement sheath, throughout the curing process. Young's modulus was decreased after the incorporation of graphite which indicates an enhancement in cement resistance to shear forces. The porosity and permeability were also decreased indicating formation of a more densified cement sheath.

5.
ACS Omega ; 7(35): 31246-31259, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092610

RESUMO

Throughout the life of a well, the cement sheath is exposed to several loadings, which can harm its key properties and impede its functions. These loadings become more significant at the early age of forming the cement sheath in which the properties of the cement are not completely developed. In this study, 10 cement samples with and without laponite particles were prepared and cured for five different periods (6, 12, 24, 48, and 72 h). The failure properties, petrophysical parameters, elastic properties, and density variation along the samples were examined. All of the samples were characterized by nuclear magnetic resonance and X-ray diffraction to understand the influence of the curing times on the cement properties. The results showed that the compressive and tensile strengths of both cement systems increased with the curing time and the incorporation of the laponite particle increased the strength of the cement. The permeability of both cement samples decreased with curing time, and the addition of laponite also decreased the permeability of the cement samples because of the presence of laponite-clay particles. The addition of laponite particles also increased the elasticity of the cement as indicated by the decrease in Young's modulus and the increase in Poisson's ratio. Logarithmic relationships were established to represent the changes in porosity, compressive strength, and tensile strength, while the changes in the other properties of permeability, Poisson's ratio, Young's modulus, and density variation were represented accurately with power-law equations.

6.
ACS Omega ; 7(7): 5764-5773, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224336

RESUMO

Oil-well cement physical characteristics considerably change after being carbonated by a CO2-rich solution. In this study, the influence of graphite particles in the characteristics of oil-well cement reacted with a CO2-rich solution at 130 °C and 10 MPa for 10 days was studied. After 10 days of carbonation, incorporating 0.2% by weight of cement (BWOC) of graphite into the cement slurry decreased the carbonation depth by 29.8% as confirmed by the direct measurement and the micro-computerized tomography scan technique. The addition of 0.2% BWOC of graphite also reduced the cement matrix permeability by 31.4% and increased its compressive strength by 16.4% and tensile strength by 23.8% compared to the sample without graphite. The decrease in the cement matrix portlandite concentration and permeability of the samples prepared with graphite contributed to promote the cement matrix carbonation resistance. The microscopic images also proved that the incorporation of graphite delayed the leaching of calcium carbonate, and this is also attributed to decreasing the cement strength deterioration.

7.
Environ Sci Pollut Res Int ; 28(40): 57030-57045, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34081280

RESUMO

A reliable assessment of the aquifer contamination vulnerability is essential for the conservation and management of groundwater resources. In this study, a recent technique in artificial intelligence modeling and computational optimization algorithms have been adopted to enhance the groundwater contamination vulnerability assessment. The original DRASTIC model (ODM) suffers from the inherited subjectivity and a lack of robustness to assess the final aquifer vulnerability to nitrate contamination. To overcome the drawbacks of the ODM, and to maximize the accuracy of the final contamination vulnerability index, two levels of modeling strategy were proposed. The first modeling strategy used particle swarm optimization (PSO) and differential evolution (DE) algorithms to determine the effective weights of DRASTIC parameters and to produce new indices of ODVI-PSO and ODVI-DE based on the ODM formula. For strategy-2, a deep learning neural networks (DLNN) model used two indices resulting from strategy-1 as the input data. The adjusted vulnerability index in strategy-2 using the DLNN model showed more superior performance compared to the other index models when it was validated for nitrate values. Study results affirmed the capability of the DLNN model in strategy-2 to extract the further information from ODVI-PSO and ODVI-DE indices. This research concluded that strategy-2 provided higher accuracy for modeling the aquifer contamination vulnerability in the study area and established the efficient applicability for the aquifer contamination vulnerability modeling.


Assuntos
Aprendizado Profundo , Água Subterrânea , Algoritmos , Inteligência Artificial , Monitoramento Ambiental , Modelos Teóricos , Redes Neurais de Computação
8.
ACS Omega ; 5(50): 32341-32348, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376870

RESUMO

Silica flour is one of the most commonly used material in cementing oil wells at high-temperature conditions of above 230 °F to prevent the deterioration in the strength of the cement. In this study, replacement of the silica flour with the granite waste material at which an inexpensive and readily available material in cementing oil-wells is evaluated. Four cement samples with various amounts of silica flour and granite powder were prepared in this work. The effect of including the granite waste instead of silica flour in the cement elastic, failure, and petrophysical properties after curing the samples at 292 °F and 3000 psi was examined. The results revealed that replacement of the silica flour with 40% by weight of cement (BWOC) optimized the cement performance and confirmed that this concentration of granite could be used as an alternative to the silica flour in oil-well cementing. This concertation of granite slightly improved the elastic properties of the cement. It also improved the cement compressive and tensile strengths by 5.7 and 39.3%, respectively, compared to when silica flour is used. Replacement of the silica flour with 40% BWOC of granite waste also reduced the cement permeability by 64.7% and porosity by 17.9%.

9.
ACS Omega ; 5(42): 27685-27691, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134732

RESUMO

After oil and gas well drilling, they should be cased and cemented to ensure the stability of the wellbore and to isolate the trouble zones. To achieve these jobs, several additives are incorporated into the cement slurry to improve the cement matrix durability, especially at temperatures above 230 F. The tire waste material is an industrial waste that comes from automobile tires. The purpose of this work is to investigate the prospect of utilizing tire waste in oil-well cement under high-temperature and high-pressure conditions of 292 F and 3000 psi. Three cement samples with different concentrations of the tire waste material were prepared. The effects of tire waste on the cement rheological properties, elastic and failure parameters, and permeability were examined. The results showed that adding 0.3% by weight of cement (BWOC) of the tire waste material considerably improved the cement to the cement slurry and cement matrix properties, and it decreased the cement plastic viscosity by 53.1% and increased its yield point by 142.4% compared to the base cement. The cement samples with 0.3% BWOC of tire waste have Young's modulus which is 10.8% less than that of the base cement and Poisson's ratio of 14.3% greater than that of the base cement. By incorporating 0.3% of the tire waste, both compressive and tensile strengths of the cement increased by 48.3 and 11.7%, respectively, compared with those of the base cement. The cement permeability was decreased by 66.0% after adding 0.3% of the tire waste. Besides the improvement in the properties of cement, the use of the tire waste material has other economical and environmental advantages because these are very cheap materials dominant in our life.

10.
Materials (Basel) ; 12(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060281

RESUMO

High-temperature conditions drastically compromise the physical properties of cement, especially, its strengths. In this work, the influence of adding nanoclay (NC) particles to Saudi class G oil well cement (OWC) strength retrogression resistance under high-temperature condition (300 °C) is evaluated. Six cement slurries with different concentrations of silica flour (SF) and NC were prepared and tested under conditions of 38 °C and 300 °C for different time periods (7 and 28 days) of curing. The changes in the cement matrix compressive and tensile strengths, permeability, loss in the absorbed water, and the cement slurry rheology were evaluated as a function of NC content and temperature, the changes in the structure of the cement surfaces were investigated through the optical microscope. The results revealed that the use of NC (up to 3% by weight of cement (BWOC)) can prevent the OWC deterioration under extremely high-temperature conditions. Incorporating more than 3% of NC severely damaged the cement matrix microstructure due to the agglomeration of the nanoparticles. Incorporation of NC particles increased all the cement slurry rheological properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...