Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14877, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689757

RESUMO

Mortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and commence therapy at an early stage. A mammography misinterpretation may result in an unnecessary biopsy of the false-positive results, lowering the patient's odds of survival. This study intends to improve breast mass detection and identification in order to provide better therapy and reduce mortality risk. A new deep-learning (DL) model based on a combination of transfer-learning (TL) and long short-term memory (LSTM) is proposed in this study to adequately facilitate the automatic detection and diagnosis of the BC suspicious region using the 80-20 method. Since DL designs are modelled to be problem-specific, TL applies the knowledge gained during the solution of one problem to another relevant problem. In the presented model, the learning features from the pre-trained networks such as the squeezeNet and DenseNet are extracted and transferred with the features that have been extracted from the INbreast dataset. To measure the proposed model performance, we selected accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) as our metrics of choice. The classification of mammographic data using the suggested model yielded overall accuracy, sensitivity, specificity, precision, and AUC values of 99.236%, 98.8%, 99.1%, 96%, and 0.998, respectively, demonstrating the model's efficacy in detecting breast tumors.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Área Sob a Curva , Benchmarking , Redes Neurais de Computação
2.
Expert Syst Appl ; 229: 120477, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220492

RESUMO

In December 2019, the global pandemic COVID-19 in Wuhan, China, affected human life and the worldwide economy. Therefore, an efficient diagnostic system is required to control its spread. However, the automatic diagnostic system poses challenges with a limited amount of labeled data, minor contrast variation, and high structural similarity between infection and background. In this regard, a new two-phase deep convolutional neural network (CNN) based diagnostic system is proposed to detect minute irregularities and analyze COVID-19 infection. In the first phase, a novel SB-STM-BRNet CNN is developed, incorporating a new channel Squeezed and Boosted (SB) and dilated convolutional-based Split-Transform-Merge (STM) block to detect COVID-19 infected lung CT images. The new STM blocks performed multi-path region-smoothing and boundary operations, which helped to learn minor contrast variation and global COVID-19 specific patterns. Furthermore, the diverse boosted channels are achieved using the SB and Transfer Learning concepts in STM blocks to learn texture variation between COVID-19-specific and healthy images. In the second phase, COVID-19 infected images are provided to the novel COVID-CB-RESeg segmentation CNN to identify and analyze COVID-19 infectious regions. The proposed COVID-CB-RESeg methodically employed region-homogeneity and heterogeneity operations in each encoder-decoder block and boosted-decoder using auxiliary channels to simultaneously learn the low illumination and boundaries of the COVID-19 infected region. The proposed diagnostic system yields good performance in terms of accuracy: 98.21 %, F-score: 98.24%, Dice Similarity: 96.40 %, and IOU: 98.85 % for the COVID-19 infected region. The proposed diagnostic system would reduce the burden and strengthen the radiologist's decision for a fast and accurate COVID-19 diagnosis.

3.
PLoS One ; 18(5): e0285455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167226

RESUMO

This study aims to predict head trauma outcome for Neurosurgical patients in children, adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare field, a comparative study of various ML techniques is developed. Several algorithms are utilized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and Support Vector Machine (SVM). Their performance is assessed using anonymous patients' data. Then, a proposed double classifier based on Henry Gas Solubility Optimization (HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to classify patients' outcome status into four states. Those are mortality, morbidity, improved, or the same. The double classifiers are evaluated via various performance metrics including recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research is the original use of hybrid technique based on RF-SVM and HGSO to predict patient outcome status with high accuracy. It determines outcome status relationship with age and mode of trauma. The algorithm is tested on more than 1000 anonymous patients' data taken from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results show that the proposed method has the highest accuracy of 99.2% (with population size = 30) compared with other classifiers.


Assuntos
Algoritmos , Aprendizado de Máquina , Adulto , Criança , Humanos , Idoso , Solubilidade , Redes Neurais de Computação , Algoritmo Florestas Aleatórias , Máquina de Vetores de Suporte
4.
Front Comput Neurosci ; 16: 1000435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387304

RESUMO

Alzheimer's disease (AD) is a neurodegenerative ailment, which gradually deteriorates memory and weakens the cognitive functions and capacities of the body, such as recall and logic. To diagnose this disease, CT, MRI, PET, etc. are used. However, these methods are time-consuming and sometimes yield inaccurate results. Thus, deep learning models are utilized, which are less time-consuming and yield results with better accuracy, and could be used with ease. This article proposes a transfer learning-based modified inception model with pre-processing methods of normalization and data addition. The proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It is concluded from the results that the proposed model performs better than other state-of-the-art models. For training purposes, a Kaggle dataset was used comprising 6,200 images, with 896 mild demented (M.D) images, 64 moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images, and 1,966 veritably mild demented (V.M.D) images. These models could be employed for developing clinically useful results that are suitable to descry announcements in MRI images.

5.
Comput Intell Neurosci ; 2022: 2645381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052029

RESUMO

Sentiment analysis is a method to identify people's attitudes, sentiments, and emotions towards a given goal, such as people, activities, organizations, services, subjects, and products. Emotion detection is a subset of sentiment analysis as it predicts the unique emotion rather than just stating positive, negative, or neutral. In recent times, many researchers have already worked on speech and facial expressions for emotion recognition. However, emotion detection in text is a tedious task as cues are missing, unlike in speech, such as tonal stress, facial expression, pitch, etc. To identify emotions from text, several methods have been proposed in the past using natural language processing (NLP) techniques: the keyword approach, the lexicon-based approach, and the machine learning approach. However, there were some limitations with keyword- and lexicon-based approaches as they focus on semantic relations. In this article, we have proposed a hybrid (machine learning + deep learning) model to identify emotions in text. Convolutional neural network (CNN) and Bi-GRU were exploited as deep learning techniques. Support vector machine is used as a machine learning approach. The performance of the proposed approach is evaluated using a combination of three different types of datasets, namely, sentences, tweets, and dialogs, and it attains an accuracy of 80.11%.


Assuntos
Aprendizado Profundo , Emoções , Humanos , Aprendizado de Máquina , Processamento de Linguagem Natural , Redes Neurais de Computação
6.
J Imaging ; 8(7)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877634

RESUMO

Because of the large variabilities in brain tumors, automating segmentation remains a difficult task. We propose an automated method to segment brain tumors by integrating the deep capsule network (CapsNet) and the latent-dynamic condition random field (LDCRF). The method consists of three main processes to segment the brain tumor-pre-processing, segmentation, and post-processing. In pre-processing, the N4ITK process involves correcting each MR image's bias field before normalizing the intensity. After that, image patches are used to train CapsNet during the segmentation process. Then, with the CapsNet parameters determined, we employ image slices from an axial view to learn the LDCRF-CapsNet. Finally, we use a simple thresholding method to correct the labels of some pixels and remove small 3D-connected regions from the segmentation outcomes. On the BRATS 2015 and BRATS 2021 datasets, we trained and evaluated our method and discovered that it outperforms and can compete with state-of-the-art methods in comparable conditions.

7.
Biomed Signal Process Control ; 73: 103441, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34899960

RESUMO

Today, the earth planet suffers from the decay of active pandemic COVID-19 which motivates scientists and researchers to detect and diagnose the infected people. Chest X-ray (CXR) image is a common utility tool for detection. Even the CXR suffers from low informative details about COVID-19 patches; the computer vision helps to overcome it through grayscale spatial exploitation analysis. In turn, it is highly recommended to acquire more CXR images to increase the capacity and ability to learn for mining the grayscale spatial exploitation. In this paper, an efficient Gray-scale Spatial Exploitation Net (GSEN) is designed by employing web pages crawling across cloud computing environments. The motivation of this work are i) utilizing a framework methodology for constructing consistent dataset by web crawling to update the dataset continuously per crawling iteration; ii) designing lightweight, fast learning, comparable accuracy, and fine-tuned parameters gray-scale spatial exploitation deep neural net; iii) comprehensive evaluation of the designed gray-scale spatial exploitation net for different collected dataset(s) based on web COVID-19 crawling verse the transfer learning of the pre-trained nets. Different experiments have been performed for benchmarking both the proposed web crawling framework methodology and the designed gray-scale spatial exploitation net. Due to the accuracy metric, the proposed net achieves 95.60% for two-class labels, and 92.67% for three-class labels, respectively compared with the most recent transfer learning Google-Net, VGG-19, Res-Net 50, and Alex-Net approaches. Furthermore, web crawling utilizes the accuracy rates improvement in a positive relationship to the cardinality of crawled CXR dataset.

8.
Comput Intell Neurosci ; 2022: 4334852, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38501034

RESUMO

To consistently assess a patient's internal and external wellness and diagnose chronic conditions like cancer, Alzheimer's disease, and cardiovascular disease, wearable sensing devices are being used. Wearable technologies and networking websites have become incredibly common in the medical sector in recent times. The condition of a patient's health can be influenced by a number of factors, including psychological response, emotional stability, and anxiety levels, which can be evaluated using social network analysis based on graph theory-based techniques and these ideas, known as "social network analysis" (SNA) are used to study relationship phenomena. Therefore, numerous uses for SNA in health research are possible, ranging from social science to exact science. For example, it can be used to research cooperative networks of healthcare providers and hazard-prone behaviors, infectious disease transmission, and the spread of initiatives for health promotion and prevention. Recently, a number of machine learning-based healthcare solutions have been proposed to track chronic illnesses utilizing data from social networks and wearable monitoring devices. In our suggested approach, we are using an intelligent system with the assistance of wearable sensors for the classification of cancer based on DNA methylation, an important epigenetic process in the human genome that controls gene expression and has been connected to a number of health issues. A mixed-sampling imbalanced data ensemble classification technique is created with the help of biomedical sensors to address the problem of class imbalance and high dimensionality in the Cancer Genome Atlas (TCGA) massive data. This technique is based on the Intelligent Synthetic Minority Oversampling (SMOTE) algorithm. The false-negative rate significantly rises as a result of this, to give a larger data set, a new minority class sample will be first obtained. The noise created during the sample expansion process is actually any data that has been acquired, preserved, or altered in a way that prevents the system that initially conceived it from accessing or utilizing it. Noisy data boosts the amount of space needed excessively and can also drastically influence the findings of any data collection investigation and therefore can also affect the sample sets of one or the other class, resulting in the class imbalance which acts as a common problem in ML datasets. The Tomek Link method is then used to eliminate this noise, producing a reasonably balanced data set. Each layer selects two random forest structures using the cascading forest structure of the deep forest (GC-Forest) algorithm to increase the generalization ability of the model and create the final classification model. Experiments using DNA methylation data collected by employing biosensors from six tumor patients reveal that the mixed-sampling unbalanced data ensemble classification technique may increase the sensitivity to the minority class while maintaining the majority class's classification accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...