Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Artigo em Inglês | MEDLINE | ID: mdl-38775851

RESUMO

Diabetic cardiomyopathy (DCM) is a serious common complication of diabetes. Unfortunately, there is no satisfied treatment for those patients and more studies are in critical need to cure them. Therefore, we aimed to carry out our current research to explore the role of two novel therapeutic approaches: one a biological drug aimed to block inflammatory signaling of the IL 1beta (IL1ß) axis, namely, anakinra; the other is provision of anti-inflammatory regenerative stem cells. Wistar male rats were allocated into four groups: control group: type 2 diabetes mellitus (DM) induced by 6-week high-fat diet (HFD) followed by a single-dose streptozotocin (STZ) 35 mg/kg i.p., then rats were allocated into: DM: untreated; DM BM-MSCs: received a single dose of BM-MSCs (1 × 106 cell/rat) into rat tail vein; DM-Anak received Anak 0.5 µg/kg/day i.p. for 2 weeks. Both therapeutic approaches improved cardiac performance, fibrosis, and hypertrophy. In addition, blood glucose and insulin resistance decreased, while the antioxidant parameter, nuclear factor erythroid 2-related factor 2 (Nrf2) and interleukin 10 (IL10), and anti-inflammatory agent increased. Furthermore, there is a significant reduction in tumor necrosis factor alpha (TNFα), IL1ß, caspase1, macrophage marker CD 11b, inducible nitric oxide synthase (iNOS), and T-cell marker CD 8. Both Anak and BM-MSCs effectively ameliorated inflammatory markers and cardiac performance as compared to non-treated diabetics. Improvement is mostly due to anti-inflammatory, antioxidant, anti-apoptotic properties, and regulation of TNFα/IL1ß/caspase1 and Nrf2/IL10 pathways.

3.
PLoS One ; 19(3): e0294318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446779

RESUMO

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Assuntos
Citrus , Melatonina , Plantas Geneticamente Modificadas , Melatonina/farmacologia , Antioxidantes/farmacologia , Citrus/genética , Agrobacterium , Catecol Oxidase , Fenóis/farmacologia , Regeneração , Suplementos Nutricionais
4.
Plants (Basel) ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068602

RESUMO

Anthocyanins are a class of natural pigments that accumulate transiently or permanently in plant tissues, often in response to abiotic and biotic stresses. They play a photoprotective role by attenuating the irradiance incident on the photochemical apparatus and quenching oxyradicals through their powerful anti-oxidative function. The objective of the current study is to understand the impact of introducing Vitis vinifera mybA1 (VvmybA1) in 'Hamlin' sweet orange trees on various aspects, including photosynthetic performance, pigment composition, and gene expression related to photosynthesis and light harvesting. We describe the relationship between anthocyanin accumulation and photosynthetic measurements in genetically modified 'Hamlin' sweet orange trees expressing the grapevine-derived Vitis vinifera mybA1 (VvmybA1). The juvenile leaves of transgenic plants displayed an intense purple color compared to the mature leaves, and microscopic visualization showed anthocyanin accumulation primarily in the leaf epidermal cells. Under optimal growth conditions, there were no significant differences in leaf gas exchange variables, suggesting normal photosynthetic performance. The chlorophyll fluorescence maximum quantum yield of PSII was slightly reduced in VvmybA1 transgenic leaves compared to the performance of the control leaves, while the total performance index per absorbance remained unaffected. Comparison of the chlorophyll and carotenoid pigment contents revealed that chlorophyllide a and carotenoid pigments, including trans-neoxanthin, trans-violaxanthin, cis-violaxanthin, zeaxanthin, antheraxanthin, and total xanthophylls were enhanced in VvmybA1 transgenic leaves. Although there were no significant changes in the rates of the gas exchange parameters, we recorded a high relative expression of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBP) and rubisco activase (RCA) in the mature leaves of transgenic plants, indicating activation of Rubisco. Our findings confirm an efficient photoacclimation of the photosynthetic apparatus, allowing the transgenic line to maintain a photosynthetic performance similar to that of the wild type.

5.
Front Plant Sci ; 13: 1019295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340410

RESUMO

The Australian finger lime (Citrus australasica) is tolerant to Huanglongbing (HLB; Citrus greening). This species can be utilized to develop HLB tolerant citrus cultivars through conventional breeding and biotechnological approaches. In this report, we conducted a comprehensive analysis of transcriptomic data following a non-choice infection assay to understand the CaLas tolerance mechanisms in the finger lime. After filtering 3,768 differentially expressed genes (DEGs), 2,396 were downregulated and 1,372 were upregulated in CaLas-infected finger lime compared to CaLas-infected HLB-susceptible 'Valencia' sweet orange. Comparative analyses revealed several DEGs belonging to cell wall, ß-glucanase, proteolysis, R genes, signaling, redox state, peroxidases, glutathione-S-transferase, secondary metabolites, and pathogenesis-related (PR) proteins categories. Our results indicate that the finger lime has evolved specific redox control systems to mitigate the reactive oxygen species and modulate the plant defense response. We also identified candidate genes responsible for the production of Cys-rich secretory proteins and Pathogenesis-related 1 (PR1-like) proteins that are highly upregulated in infected finger lime relative to noninfected and infected 'Valencia' sweet orange. Additionally, the anatomical analysis of phloem and stem tissues in finger lime and 'Valencia' suggested better regeneration of phloem tissues in finger lime in response to HLB infection. Analysis of callose formation following infection revealed a significant difference in the production of callose plugs between the stem phloem of CaLas+ 'Valencia' sweet orange and finger lime. Understanding the mechanism of resistance will help the scientific community design strategies to protect trees from CaLas infection and assist citrus breeders in developing durable HLB tolerant citrus varieties.

6.
Plant Cell Rep ; 41(12): 2305-2320, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36107199

RESUMO

KEY MESSAGE: Overexpression of the salicylic acid binding protein 2 (SABP2) gene from Tobacco results in enhanced tolerance to Huanglongbing (HLB; citrus greening disease) in transgenic sweet oranges. Huanglongbing (HLB), the most destructive citrus disease, is caused by Candidatus Liberibacter asiaticus (CaLas). Currently, no cure for this disease exists, and all commercially planted cultivars are highly susceptible. Salicylic Acid Binding Protein 2 (SABP2) is a well-characterized protein essential for establishing systemic acquired resistance (SAR) in tobacco. The constitutive over expression of SABP2 from tobacco (NtSABP2) in 'Hamlin' sweet orange resulted in the production of several transgenic lines with variable transcript levels. Transient expression of the NtSABP2-EGFP fusion protein in Nicotiana benthamiana plants demonstrated that NtSABP2 was cytosolic in its subcellular localization. In a long-term field study, we identified a SABP2 transgenic line with significantly reduced HLB symptoms that maintained a consistently low CaLas titer. Transcriptome analysis of this selected transgenic line demonstrated upregulation of several genes related to plant defense and SAR pathways. Genes, such as NPR family genes and those coding for monooxygenases and lipoxygenases, were upregulated in the 35S-NtSABP2 overexpressing line and might be candidates for incorporation into our citrus improvement program.


Assuntos
Citrus sinensis , Citrus , Rhizobiaceae , Nicotiana/genética , Citrus/genética , Doenças das Plantas/genética , Citrus sinensis/genética , Citrus sinensis/metabolismo , Liberibacter , Ácido Salicílico/metabolismo
7.
Plant Sci ; 323: 111401, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905898

RESUMO

Citrus is a major fruit crop cultivated on a global scale. Citrus trees are long lived perennials with a large canopy. Understanding the genetic control of tree architecture could provide tools for breeding and selection of citrus cultivars suitable for high density planting with improved light exposure. Tree architecture is modulated by the TILLER ANGLE CONTROL 1 (TAC1) gene which plays an important role in the regulation of the shoot angle. Herein, we used CRISPR/Cas9 technology to knockout the CsTAC1 gene for the biochemical and molecular analysis of its function. Nine transgenic lines were obtained, and five edited plants were confirmed based on T7EI mismatch detection assay and Sanger sequencing. The transgenic citrus lines exhibited pleiotropic phenotypes, including differences in branch angle and stem growth. Additionally, silencing CsTAC1 led to enhanced CsLAZY1 transcript levels in the tested lines. Analysis of the phytohormonal profile revealed that TAC1-edited plants exhibited lower auxin contents and increased cytokinin levels in the leaves compared to the wild-type plants. The GA7 gibberellin level was enhanced in most of the edited lines. Collectively, TAC1 affects branch angle in association with hormone signals in citrus.


Assuntos
Citrus sinensis , Citrus , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Árvores/metabolismo
8.
Food Environ Virol ; 14(2): 178-189, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35246828

RESUMO

There is an upward trend of consumption of organic fresh vegetables due to consumer demand for healthy foods without chemical additives. On the other hand, the number of food borne outbreaks associated with contaminated fresh produce has raised, being human norovirus genogroup I (GI), GII and hepatitis A virus (HAV) the most commonly reported causative agents. This study aimed to detect the presence of these viruses in green leafy vegetables (watercress, leek, coriander, and parsley) and strawberry using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were collected from the Egyptian regions of Kalubia, Giza, and Mansoura. Overall HAV average occurrence in fresh strawberry was 48% with a mean concentration of 6.1 × 103 GC/g; Also NoV GI overall average occurrence was 25% with a mean concentration of 9.7 × 102 genome copies (GC)/g, while NoV GII was 40% with a mean concentration of 2.4 × 103 GC/g. For strawberry collected directly from Kalubia farms, neither HAV nor HNoV GI & GII were detected. In green leafy vegetable samples, the occurrence of HAV was 31.2% with a mean concentration of 9.2 × 104 GC/g, while occurrence of NoV GI and NoV GII were 20% and 30% with a mean concentrations of 1.1 × 104 and 2.03 × 103 GC/g, respectively. In conclusion, the importance of a virus surveillance program for soft fruits and fresh vegetables is highlighted by the outcomes of this study. Our findings should help with the management and control of microbial concerns in fresh foods, reducing the danger of consuming contaminated foods.


Assuntos
Fragaria , Vírus da Hepatite A , Norovirus , Vírus , Egito , Vírus da Hepatite A/genética , Humanos , Norovirus/genética , Verduras
9.
Plant Methods ; 18(1): 33, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303912

RESUMO

BACKGROUND: The genetic engineering of crops has enhanced productivity in the face of climate change and a growing global population by conferring desirable genetic traits, including the enhancement of biotic and abiotic stress tolerance, to improve agriculture. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system has been found to be a promising technology for genomic editing. Protoplasts are often utilized for the development of genetically modified plants through in vitro integration of a recombinant DNA fragment into the plant genome. We targeted the citrus Nonexpressor of Pathogenesis-Related 3 (CsNPR3) gene, a negative regulator of systemic acquired resistance (SAR) that governs the proteasome-mediated degradation of NPR1 and developed a genome editing technique targeting citrus protoplast DNA to produce stable genome-edited citrus plants. RESULTS: Here, we determined the best cationic lipid nanoparticles to deliver donor DNA and described a protocol using Lipofectamine™ LTX Reagent with PLUS Reagent to mediate DNA delivery into citrus protoplasts. A Cas9 construct containing a gRNA targeting the CsNPR3 gene was transfected into citrus protoplasts using the cationic lipid transfection agent Lipofectamine with or without polyethylene glycol (PEG, MW 6000). The optimal transfection efficiency for the encapsulation was 30% in Lipofectamine, 51% in Lipofectamine with PEG, and 2% with PEG only. Additionally, plasmid encapsulation in Lipofectamine resulted in the highest cell viability percentage (45%) compared with PEG. Nine edited plants were obtained and identified based on the T7EI assay and Sanger sequencing. The developed edited lines exhibited downregulation of CsNPR3 expression and upregulation of CsPR1. CONCLUSIONS: Our results demonstrate that utilization of the cationic lipid-based transfection agent Lipofectamine is a viable option for the successful delivery of donor DNA and subsequent successful genome editing in citrus.

10.
Environ Sci Pollut Res Int ; 29(19): 28139-28148, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988812

RESUMO

Surface water used as an irrigation source can be a significant source of viral contamination of fresh produce. Enteric viruses such as hepatitis A virus (HAV) and human norovirus genogroup I (HNoV GI) and genogroup II (HNoV GII) can be transmitted to human via fresh produce when irrigated with contaminated water or when prepared by infected food handlers. In the current study, we investigated the presence of HAV, HNoV GI and GII in fresh produce and surface water used in cultivation of this produce using real-time PCR. Samples were collected from six different points in the Mansoura and Giza regions, Egypt. Our analysis showed that at least one virus was found in 41.6% (30/72) of surface water samples and 27% (13/48) of fresh produce samples. HAV (23/72) with a mean viral concentration = 4 × 106 genome copies/litre (GC/L) was the most frequently identified virus in surface water samples, followed by human norovirus genogroup II (HNoV GII) (15/72, with a mean concentration = 1.2 × 106 GC/L, and human noroviruses genogroup I (HNoV GI) (12/72, with a mean concentration = 1.4 × 104 GC/L). Additionally, HAV (10/48) with a mean concentration = 5.2 × 105 genome copies/gram (GC/g) was also the most frequently detected virus in the fresh produce samples, followed by HNoV GII (8/48, with a mean concentration = 1.7 × 104 GC/g); meanwhile, HNoV GI (6/48) was less detected virus with a mean concentration = 3 × 103 GC/g. This work suggests a wide prevalence of human enteric viruses in surface waters and fresh produce, which is of concern when the fresh produce is eaten raw. Thus, additional monitoring for viral pathogens in irrigation water and food is needed to increase the awareness of this issue to rise the control measures to reduce illness from contaminated food.


Assuntos
Enterovirus , Vírus da Hepatite A , Norovirus , Vírus , Egito , Enterovirus/genética , Vírus da Hepatite A/genética , Humanos , Norovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus/genética , Água
11.
PLoS One ; 16(8): e0255842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34375348

RESUMO

The Australian finger lime is a unique citrus species that has gained importance due to its unique fruit characteristics and perceived tolerance to Huanglongbing (HLB), an often-fatal disease of citrus trees. In this study, we developed allotetraploid finger lime hybrids and cybrids by utilizing somatic cell fusion techniques to fuse diploid 'OLL8' sweet orange or 'Page' tangelo callus-derived protoplasts with finger lime (FL) mesophyll-derived protoplasts. Six somatic fusions were regenerated from the 'OLL8' + FL fusion, while three putative cybrids were regenerated from the 'Page' + FL fusion. Ploidy levels and nuclear-expressed sequence tag derived simple sequence repeat (EST-SSR) markers confirmed the somatic hybrid production, and mitochondrial DNA primer sets confirmed the cybrid nature. Several trees produced by the somatic fusion remained HLB negative even after 6 years of growth in an HLB-endemic environment. Pathogenesis related (PR) and other genes that are often upregulated in HLB-tolerant trees were also upregulated in our somatic fusions. These newly developed somatic fusions and cybrids could potentially be used as breeding parents to develop the next generation of improved HLB-tolerant rootstocks and scions.


Assuntos
Citrus/genética , Melhoramento Vegetal/métodos , Austrália , Citrus/anatomia & histologia , Citrus sinensis/anatomia & histologia , Citrus sinensis/genética , Diploide , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Células Híbridas/citologia , Células Híbridas/metabolismo , Repetições de Microssatélites/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Polimorfismo Genético , Protoplastos/citologia , Protoplastos/metabolismo , Tetraploidia
12.
Plants (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34371641

RESUMO

Huanglongbing (HLB), caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus (CaLas), is the primary biotic stress causing significant economic damage to the global citrus industry. Among the abiotic stresses, salinity affects citrus production worldwide, especially in arid and coastal regions. In this study, we evaluated open-pollinated seedlings of the S10 (a diploid rootstock produced from a cross between two siblings of the Hirado Buntan Pink pummelo (Citrus maxima (Burm.) Merr.) with the Shekwasha mandarin (Citrus reticulata Blanco)) for their ability to tolerate HLB and salinity stresses. In a greenhouse study, 'Valencia' sweet orange (either HLB-positive or negative) was grafted onto six clonally propagated lines generated from the screened seedlings in the greenhouse and the trees were irrigated with 150 mM NaCl after eight months of successful grafting and detection of CaLas in the leaf petioles. Cleopatra mandarin was used as a salt-tolerant and HLB-sensitive rootstock control. CaLas infection was monitored using a quantitative polymerase chain reaction before and after NaCl treatments. Following three months of NaCl treatment, 'Valencia' leaves on the S10 rootstock seedlings recorded lower levels of chlorophyll content compared to Cleopatra under similar conditions. Malondialdehyde content was higher in HLB-infected 'Valencia' grafted onto Cleopatra than in the S10 lines. Several plant defense-related genes were significantly upregulated in the S10 lines. Antioxidant and Na+ co-transporter genes were differentially regulated in these lines. Based on our results, selected S10 lines have potential as salt-tolerant rootstocks of 'Valencia' sweet orange under endemic HLB conditions. However, it is necessary to propagate selected lines through tissue culture or cuttings because of the high percentage of zygotic seedlings derived from S10.

13.
Sci Rep ; 10(1): 21404, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293614

RESUMO

Shortening the juvenile stage in citrus and inducing early flowering has been the focus of several citrus genetic improvement programs. FLOWERING LOCUS T (FT) is a small phloem-translocated protein that regulates precocious flowering. In this study, two populations of transgenic Carrizo citrange rootstocks expressing either Citrus clementina FT1 or FT3 genes under the control of the Arabidopsis thaliana phloem specific SUCROSE SYNTHASE 2 (AtSUC2) promoter were developed. The transgenic plants were morphologically similar to the non-transgenic controls (non-transgenic Carrizo citrange), however, only AtSUC2-CcFT3 was capable of inducing precocious flowers. The transgenic lines produced flowers 16 months after transformation and flower buds appeared 30-40 days on juvenile immature scions grafted onto transgenic rootstock. Gene expression analysis revealed that the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and APETALA1 (AP1) were enhanced in the transgenics. Transcriptome profiling of a selected transgenic line showed the induction of genes in different groups including: genes from the flowering induction pathway, APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family genes, and jasmonic acid (JA) pathway genes. Altogether, our results suggested that ectopic expression of CcFT3 in phloem tissues of Carrizo citrange triggered the expression of several genes to mediate early flowering.


Assuntos
Quimera/fisiologia , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Quimera/genética , Citrus/genética , Citrus/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Poncirus/genética , Poncirus/fisiologia , Análise de Sequência de RNA
14.
Plants (Basel) ; 8(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847196

RESUMO

Horticultural crops, including fruit, vegetable, and ornamental plants are an important component of the agriculture production systems and play an important role in sustaining human life. With a steady growth in the world's population and the consequent need for more food, sustainable and increased fruit and vegetable crop production is a major challenge to guarantee future food security. Although conventional breeding techniques have significantly contributed to the development of important varieties, new approaches are required to further improve horticultural crop production. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a valuable genome-editing tool able to change DNA sequences at precisely chosen loci. The CRISPR/Cas9 system was developed based on the bacterial adaptive immune system and comprises of an endonuclease guided by one or more single-guide RNAs to generate double-strand breaks. These breaks can then be repaired by the natural cellular repair mechanisms, during which genetic mutations are introduced. In a short time, the CRISPR/Cas9 system has become a popular genome-editing technique, with numerous examples of gene mutation and transcriptional regulation control in both model and crop plants. In this review, various aspects of the CRISPR/Cas9 system are explored, including a general presentation of the function of the CRISPR/Cas9 system in bacteria and its practical application as a biotechnological tool for editing plant genomes, particularly in horticultural crops.

15.
Biochem Cell Biol ; 96(5): 564-571, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29425466

RESUMO

The aim of this study was to investigate the effect of a regenerative therapy comprising mesenchymal stem cells (MSCs) pretreated with melatonin (MT) as a new therapy for underlying diabetic nephropathy (DN) pathogenesis in a rat model, and its possible effect on autophagy protein Beclin-1. Forty adult male albino Wistar rats were distributed among 4 groups: (i) control, (ii) DN, (iii) MSC-treated, and (iv) treated with MSCs that were pre-incubated in-vitro with MT (5 µmol·L-1 for 24 h; MSCs + MT). MSCs treatment significantly improved the renal functions and ameliorated the measured underlying DN pathogenesis and elevation of Beclin-1 protein levels compared with the DN group. In-vitro pretreatment of MSCs with MT enhanced proliferation and efficiency, and thus improved the kidney functions by increasing superoxide dismutase (SOD-1) and Beclin-1, and decreasing transforming growth factor (TGF-ß) markers in the kidney tissue, compared with the MSC group (P < 0.05). In conclusion: MSCs represent a promising target in DN management, and their effect can be intensified by pretreatment with MT. The elevated levels of Beclin-1 could be a mediator.


Assuntos
Nefropatias Diabéticas/terapia , Rim/metabolismo , Melatonina/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Aloenxertos , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Rim/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Ratos , Ratos Wistar
16.
J Immunoassay Immunochem ; 28(2): 91-105, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17424828

RESUMO

Carcinoembryonic antigen (CEA) is the most widely used clinical tumor marker. CEA immunoassay has found acceptance as a diagnostic adjunct in clinical diagnosis of gastrointestinal tumors (GIT). Several immunoassays have been established for detection of CEA in plasma, serum, tissue, feces, and urine of cancer patients using polyclonal or monoclonal antibodies raised against CEA. Some of these assays display both high sensitivity and specificity for the detection of CEA. However, these assays require special and highly expensive equipment and the procedures require long periods for their completion. In the present study, we established a Slot-Blot Enzyme Linked Immunosorbent Assay (SB-ELISA), based on anti-CEA monoclonal antibody (CEA-mAb), as a new, simple, fast, cheap, and non-invasive immunodiagnostic technique for detection of CEA in the urine of GIT patients. Urine and serum samples were collected from 248 GIT patients (58 with pancreatic cancer, 20 with hepatoma, 23 with ampullary carcinoma, 15 with hilar cholangiocarcinoma, 28 with gastric cancer, 14 with esophageal cancer, and 90 with colorectal cancer). Moreover, urine and serum samples were collected from 50 healthy individuals to serve as negative controls. The traditional ELISA technique was used for determination of CEA in the sera of GIT patients using anti-CEA monoclonal antibody. A comparison between the results of both techniques (ELISA and SB-ELISA) was carried out. The traditional ELISA detected CEA in the sera of 154 out of 248 GIT patients with a sensitivity of 59.8%, 51.7% positive predictive value (PPV) and 75.37% negative predictive value (NPV). In addition, it identified 15 false positive cases out of 50 healthy individuals with a specificity of 70%. The urinary CEA was identified by a Western blotting technique and CEA-mAb at a molecular mass of 180 Kda. The developed SB-ELISA showed higher sensitivity, specificity, PPV, and NPV (70.1%, 78%, 62.4%, and 82.13%, respectively) for detection of CEA in the urine of GIT patients. The semi-quantitative SB-ELISA showed a higher overall efficiency of 72.8% versus 63.4% in the case of the quantitative ELISA, for detection of CEA. In conclusion, SB-ELISA is more efficient for detection of CEA in gastrointestinal tumors. It is a simple, rapid, non-invasive, and sensitive assay. Moreover, all steps of the SB-ELISA are performed at room temperature, without the use of expensive equipment; this may enhance the application of this assay in field studies and mass screening programs.


Assuntos
Antígeno Carcinoembrionário/urina , Ensaio de Imunoadsorção Enzimática/métodos , Neoplasias Gastrointestinais/diagnóstico , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...