Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 4): 127009, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37734521

RESUMO

This study looked into how well the macro-hollow loofah fiber with and without the bio-attaching with green microalga (Chlamydomonas reinhardtii OR242521) was applied methylene blue elimination from water. Based on the results, the biosorption capacity of loofah sponge for methylene blue significantly increased with the increase of contact time, weight of microalgal biofilm, and methylene blue concentration. The maximum biosorption capacity was achieved after 120 min, after 0.042 mgg-1 biofilm weight, and MB concentration of 140 mgL-1. Furthermore, methylene blue's biosorption capacity was strongly affected by pH, reaching its maximum at pH 7. The biosorption capacity of the bio-attached loofah sponge was much higher than that of the loofah sponge, revealing that the microalgae bio-attachment enhanced the biosorption capacity of the loofah sponge. At the end of the MB biosorption process, the used bio-attached loofah sponge can still be utilized once more for the same purpose after the desorption of MB but with a lower biosorption capacity. Furthermore, the loofah sponge could also be applied as a bio-sorbent after domestic use. According to this study, the loofah sponge with or without algal biofilm attachment could be applied as a low-cost efficient bio-sorbent for methylene blue removal from water. However, the loofah sponge's ability for biosorption was dramatically increased by the bio-attachment of microalgae, making it a more potent bio-sorbent. Likewise, this study offers insights into the variables influencing the biosorption capacity of loofah sponges and bio-attached loofah sponges, which could be beneficial for enhancing the biosorption processes.


Assuntos
Luffa , Microalgas , Poluentes Químicos da Água , Azul de Metileno , Adsorção , Cinética , Água , Concentração de Íons de Hidrogênio
2.
Biotechnol Rep (Amst) ; 35: e00753, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864885

RESUMO

In this work, freshwater microalga, Haematococcus lacustris was isolated from the River Nile, identified and deposited in genebank under name of H. lacustris isolate REH10 with accession number OK336515. N-hexane extract was produced high inhibition effects against multi-antibiotic resistant pathogens. The n-Hexane extract was fractionated and 2 fractions (F3 & F4) exhibited high antibacterial activity (15 - 20 mm) compared with other fractions. Thus, they sub-fractionated and 2 sub-fractions produced from the F3 had high inhibition activity against all tested pathogens (18-20 mm). To identify the main compounds responsible for inhibition growth of multi-drug resistance bacteria, GC-MS chromatogram analyses was applied on the F3 and its sub-fractions 2 and 3. Five compounds detected in the 2 sub-fractions. Palmitic acid was identified as the first report antibacterial agent. The antioxidant activity of SF3-3 was reached to 86 and 80.5% for DPPH and ABTS.+ tests, respectively.

3.
RSC Adv ; 12(10): 5749-5764, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424538

RESUMO

Microbial fuel cells (MFCs) are recognized as a future technology with a unique ability to exploit metabolic activities of living microorganisms for simultaneous conversion of chemical energy into electrical energy. This technology holds the promise to offer sustained innovations and continuous development towards many different applications and value-added production that extends beyond electricity generation, such as water desalination, wastewater treatment, heavy metal removal, bio-hydrogen production, volatile fatty acid production and biosensors. Despite these advantages, MFCs still face technical challenges in terms of low power and current density, limiting their use to powering only small-scale devices. Description of some of these challenges and their proposed solutions is demanded if MFCs are applied on a large or commercial scale. On the other hand, the slow oxygen reduction process (ORR) in the cathodic compartment is a major roadblock in the commercialization of fuel cells for energy conversion. Thus, the scope of this review article addresses the main technical challenges of MFC operation and provides different practical approaches based on different attempts reported over the years.

4.
Bioprocess Biosyst Eng ; 44(4): 759-768, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420818

RESUMO

Microbial fuel cells (MFCs) have significant interest in the research community due to their ability to generate electricity from biodegradable organic matters. Anode materials and their morphological structures play a crucial role in the formation of electroactive biofilms that enable the direct electron transfer. In this work, modified electrodes with nanomaterials, such as multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), Al2O3/rGO or MnO2/MWCNTs nanocomposites were synthesized, characterized and utilized to support the growth of electrochemically active biofilms. The MFC's performance is optimized using anode-respiring strains isolated from biofilm-anode surface, while the adjusted operation is conducted with the consortium of (Enterobacter sp.). Besides the formation of matured biofilm on its surface, MnO2/MWCNTs nanocomposite produced the highest electrical potential outputs (710 mV) combined with the highest power density (372 mW/m2). Thus, a correlation between the anode nanostructured materials and the progression of the electrochemically active biofilms formation is presented, allowing new thoughts for enhancing the MFC's performance for potential applications ranging from wastewater treatment to power sources.


Assuntos
Materiais Biocompatíveis/química , Fontes de Energia Bioelétrica , Eletrodos , Nanotubos de Carbono/química , Biofilmes , Eletricidade , Transporte de Elétrons , Desenho de Equipamento , Grafite , Compostos de Manganês , Teste de Materiais , Nanoestruturas , Óxidos , Purificação da Água/instrumentação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...