Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 8(10)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333236

RESUMO

The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interfase/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Masculino , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Espermatócitos/citologia , Espermatócitos/metabolismo
2.
Cell Cycle ; 16(21): 2108-2118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933587

RESUMO

It has become more and more evident that the BCL-2 family proteins mediate a wide range of non-apoptotic functions. The pro-apoptotic BAX protein has been reported in interphasic nuclei. Whether the nuclear form of BAX could be involved in non-apoptotic function is still unknown. Our study showed for the first time that BAX was associated with chromatin in vitro. Next, we used gain and loss of function approaches to decipher the potential role of nuclear BAX in non-apoptotic cells. In vitro, nuclear BAX promoted cell proliferation in lung epithelial cells and primary human lung fibroblasts by modulating CDKN1A expression. Interestingly, BAX occupancy of CDKN1A promoter was specifically enriched close to the transcription-starting site. Nuclear BAX also modulated the basal myofibroblastic differentiation and migration of primary human lung fibroblasts. Finally, BAX nuclear localization was associated in vivo with the remodelling of lung parenchyma during development, tumorigenesis as well as fibrosis compared to control adult human lungs. Hence, our study established for the first time, a strong link between the nuclear localization of the pro-apoptotic BAX protein and key basic cellular functions in the non-apoptotic setting.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Interfase , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...