Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Appl ; 31(2): 273-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27194602

RESUMO

In this study, disruption and lyophilization-rehydration of dopamine-loaded liposome and its application in electrochemical DNA biosensor was investigated. The liposomes containing soyphosphatidylcholine and cholesterol were prepared through thin-layer hydration. First, an investigation was carried out to find an appropriate lysing agent for disruption of prepared liposomes. Differential pulse voltammetry, as a high sensitive electrochemical technique, was used along with a multi-walled carbon nanotubes modified glassy carbon electrode for sensitive electrochemical detection of released dopamine from disrupted liposomes. Various lysing agents were investigated and finally, the disruption of liposomes using methanol was selected without any surfactant, because of its least fouling effect. Then, lyophilization of dopamine-loaded liposomes was carried out using sucrose as cryoprotectant. The electrochemical studies of lyophilized liposomes showed that the remained dopamine in sucrose-protected liposomes was higher than sucrose-free liposomes. Furthermore, sucrose has no interference in electrochemical studies. Then, with the addition of biotin-X-DHPE to liposome formulation, the lyophilized sucrose protected dopamine-loaded biotin-tagged liposomes were prepared and the feasibility of application of them in electrochemical DNA biosensor was investigated as signal enhancer and verified for detection of oligonucleotides.


Assuntos
Técnicas Biossensoriais , DNA/química , Dopamina/química , Técnicas Eletroquímicas/métodos , Lipossomos/química , Biotina/análogos & derivados , Biotina/química , Eletrodos , Liofilização , Nanotubos de Carbono/química , Oligonucleotídeos/análise , Tamanho da Partícula , Fosfatidiletanolaminas/química , Sacarose/química
2.
Biosens Bioelectron ; 80: 426-432, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874110

RESUMO

Telomerase, which has been detected in almost all kinds of cancer tissues, is considered as an important tumor marker for early cancer diagnostics. In the present study, an electrochemical method based on liposomal signal amplification platform is proposed for simple, PCR-free, and highly sensitive detection of human telomerase activity, extracted from A549 cells. In this strategy, telomerase reaction products, which immobilized on streptavidin-coated microplate, hybridized with biotinylated capture probes. Then, dopamine-loaded biotinylated liposomes are attached through streptavidin to biotinylated capture probes. Finally, liposomes are ruptured by methanol and the released-dopamine is subsequently measured using differential pulse voltammetry technique by multi-walled carbon nanotubes modified glassy carbon electrode. Using this strategy, the telomerase activity extracted from 10 cultured cancer cells could be detected. Therefore, this approach affords high sensitivity for telomerase activity detection and it can be regarded as an alternative to telomeric repeat amplification protocol assay, having the advantages of simplicity and less assay time.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais , Neoplasias/diagnóstico , Telomerase/isolamento & purificação , Biomarcadores Tumorais/química , Células HeLa , Humanos , Lipossomos/química , Nanotubos de Carbono/química , Neoplasias/genética , Telomerase/química , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...