Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Chem ; 46(3): 730-746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37720623

RESUMO

The oxidation of ethylbenzene (EB) using tert-butyl hydroperoxide as the oxidizing agent was carried out in presence of gold nanoparticles (3 nm) supported on zinc oxide in acetonitrile solution. A higher selectivity towards acetophenone (ACP) as the major product, and a moderate selectivity towards other products such as 1-phenylethanol (PE), benzaldehyde (BZL), and benzoic acid (BzA) were observed using the prepared Au/ZnO nanocatalysts at 100 °C for 24 h. It is suggested the reaction produces an intermediate product, which is dimethylethyl-1-phenylethyl peroxide through a radical mechanism. A small amount of benzaldehyde was observed because benzaldehyde went autoxidation to form benzoic acid with the presence of oxidation agent of TBHP during reaction. The factors affecting the catalytic activity such as gold loading, calcination treatment at 300°C, type of solvent, reaction time, reaction temperature, oxidant to substrate molar ratio, catalyst weight, and solvent volume were studied. The gold nanoparticle catalyst synthesized by deposition precipitation method using urea was characterized by XRD, HRTEM, ATR-IR, XRF, and BET and offers a very selective reaction pathway for the oxidation of ethylbenzene.

2.
Chem Cent J ; 7(1): 80, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23634962

RESUMO

BACKGROUND: Metal tungstates have attracted much attention due to their interesting structural and photoluminescence properties. Depending on the size of the bivalent cation present, the metal tungstates will adopt structures with different phases. In this work, three different phases of metal tungstates MWO4 (M= Ba, Ni and Bi) were synthesized via the sucrose templated method. RESULTS: The powders of BaWO4 (tetragonal), NiWO4 (monoclinic) and Bi2WO6 (orthorhombic) formed after calcination temperatures of 750, 650 and 600°C for 4 h respectively are found to be crystalline and exist in their pure phase. Based on Scherrer estimation, their crystallite size are of nanosized. BET results showed NiWO4 has the highest surface area. BaWO4 exhibited less Raman vibrations than the NiWO4 because of the increased lattice symmetry but Bi2WO6 showed almost the same Raman vibrations as BaWO4. From the UV-vis spectra, the band gap transition of the metal tungstates are of the order of BaWO4 > Bi2WO6 > NiWO4. Broad blue-green emission peaks were detected in photoluminescence spectra and the results showed the great dependence on morphology, crystallinity and size of the metal tungstates. CONCLUSION: Three different phases of metal tungstates of BaWO4 (scheelite), NiWO4 (wolframite) and Bi2WO6 (perovskite layer) in their pure phase were successfully prepared by the simple and economical sucrose-templated method. The highest surface area is exhibited by NiWO4 while largest band gap is shown by BaWO4. These materials showed promising optical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...