Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(48): 43700-43709, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506208

RESUMO

The carbon dioxide reforming of methane has attracted attention from researchers owing to its possibility of both mitigating the hazards of reactants and producing useful chemical intermediates. In this framework, the activity of the nickel-based catalysts, supported by yttria-stabilized zirconia and promoted with holmium oxide (Ho2O3), was assessed in carbon dioxide reforming of methane at 800 °C. The catalysts were characterized by N2-physisorption, H2 temperature-programmed reduction, temperature-programmed desorption of CO2, X-ray diffraction, scanning electron microscopy (SEM) together with energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) techniques. The effect of holmium oxide weight percent loading (0.0, 1.0, 2.0, 3,0, 4.0, and 5.0 wt %) was examined owing to its impact on the developed catalysts. The optimum loading of Ho2O3 was found to be 4.0 wt %, where the methane and carbon dioxide conversions were 85 and 91%, respectively. The nitrogen adsorption-desorption isotherms specified the mesoporous aspect of the catalysts, while the SEM images displayed a morphology of agglomerated, porous particles. The TEM images of the spent catalyst displayed the formation of multiwalled carbon nanotubes. TGA of the 4.0 wt % of Ho2O3 catalyst, experimented over 7-hour time-on-stream, displayed little weight loss (<14.0 wt %) owing to carbon formation, indicating the good resistance of the catalyst to carbon accumulation due to the enhancing ability of Ho2O3 and its adjustment of the support.

2.
Molecules ; 25(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138289

RESUMO

Catalysts of 10% Ni, supported on promoted alumina, were used to accomplish the partial oxidation of methane. The alumina support was doped with oxides of Mo, Mg, Ti and Y. An incipient wetness impregnation technique was used to synthesize the catalysts. The physicochemical properties of the catalysts were described by XRD, H2-TPR (temperature programmed reduction), BET, TGA, CO2-TPD (temperature-programmed desorption) and Raman. The characterization results denoted that Ni has a strong interaction with the support. The TGA investigation of spent catalysts displayed the anticoking enhancement of the promoters. The impact of the support promoters on the catalyst stability, methane conversion and H2 yield was inspected. Stability tests were done for 460 min. The H2 yields were 76 and 60% and the CH4 conversions were 67 and 92%, respectively, over Ni/Al2O3+Mg, when the reaction temperatures were 550 and 650 °C, respectively. The performance of the present work was compared to relevant findings in the literature.


Assuntos
Compostos de Alumínio/química , Manganês/química , Metano/química , Molibdênio/química , Níquel/química , Titânio/química , Ítrio/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...