Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Bull ; 234(3): 180-191, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29949435

RESUMO

Within the Southern Ocean, the Antarctic Circumpolar Current is hypothesized to facilitate a circumpolar distribution for many taxa, even though some, such as pycnogonids, are assumed to have limited ability to disperse, based on brooding life histories and adult ambulatory capabilities. With a number of contradictions to circumpolarity reported in the literature for other pycnogonids, alternative hypotheses have been explored, particularly for Nymphon australe, the most common species of Pycnogonida (sea spider) in the Southern Ocean. Glacial events have been hypothesized to impact the capacity of organisms to colonize suitable areas without ice coverage as refuge and without the eurybathic capacity to colonize deeper areas. In this study, we examine populations of one presumed circumpolar species, the pycnogonid N. australe, from throughout the Western Antarctic, using a 2b-RAD approach to detect genetic variation with single-nucleotide polymorphisms. Using this approach, we found that N. australe included two distinct groups from within >5000-km sampling region. By using a discriminant analysis of principle components, sparse nonnegative matrix factorization, and admixture coefficient analysis, two distinctive populations were revealed in the Western Antarctic: one covered distances greater than 5000 km (Weddell, Western Antarctic Peninsula, and Ross Sea), and the other shared limited connectivity entrained within the Amundsen Sea. Under further scrutiny of the 3086 single-nucleotide polymorphisms in the data set, only 78 loci had alignment stacks between the two populations. We propose that the populations analyzed are divergent enough to constitute two different species from within this common Antarctic genus known for its phenotypic plasticity.


Assuntos
Artrópodes/genética , Genética Populacional , Genoma/genética , Animais , Regiões Antárticas , Variação Genética
2.
J R Soc Interface ; 10(78): 20120637, 2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-23015524

RESUMO

Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications.


Assuntos
Bivalves/genética , DNA/genética , Nanopartículas/química , Sondas de Oligonucleotídeos/química , Análise de Sequência de DNA/métodos , Animais , Microscopia Confocal/métodos , Poliestirenos/química
3.
Phys Med Biol ; 44(6): 1529-41, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10498521

RESUMO

A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards.


Assuntos
DNA/análise , Eletroforese em Gel de Ágar/instrumentação , Eletroforese em Gel de Ágar/métodos , Raios Ultravioleta , Etídio/metabolismo , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...