Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2072, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055408

RESUMO

Accurate segregation of chromosomes is required to maintain genome integrity during cell division. This feat is accomplished by the microtubule-based spindle. To build a spindle rapidly and with high fidelity, cells take advantage of branching microtubule nucleation, which rapidly amplifies microtubules during cell division. Branching microtubule nucleation relies on the hetero-octameric augmin complex, but lack of structure information about augmin has hindered understanding how it promotes branching. In this work, we combine cryo-electron microscopy, protein structural prediction, and visualization of fused bulky tags via negative stain electron microscopy to identify the location and orientation of each subunit within the augmin structure. Evolutionary analysis shows that augmin's structure is highly conserved across eukaryotes, and that augmin contains a previously unidentified microtubule binding site. Thus, our findings provide insight into the mechanism of branching microtubule nucleation.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Animais , Proteínas Associadas aos Microtúbulos/metabolismo , Microscopia Crioeletrônica , Microtúbulos/metabolismo , Vertebrados/metabolismo , Sítios de Ligação , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
2.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187763

RESUMO

Microtubules (MTs) perform essential functions in the cell, and it is critical that they are made at the correct cellular location and cell cycle stage. This nucleation process is catalyzed by the γ-tubulin ring complex (γ-TuRC), a cone-shaped protein complex composed of over 30 subunits. Despite recent insight into the structure of vertebrate γ-TuRC, which shows that its diameter is wider than that of a MT, and that it exhibits little of the symmetry expected for an ideal MT template, the question of how γ-TuRC achieves MT nucleation remains open. Here, we utilized single particle cryo-EM to identify two conformations of γ-TuRC. The helix composed of 14 γ-tubulins at the top of the γ-TuRC cone undergoes substantial deformation, which is predominantly driven by bending of the hinge between the GRIP1 and GRIP2 domains of the γ-tubulin complex proteins. However, surprisingly, this deformation does not remove the inherent asymmetry of γ-TuRC. To further investigate the role of γ-TuRC conformational change, we used cryo electron-tomography (cryo-ET) to obtain a 3D reconstruction of γ-TuRC bound to a nucleated MT, providing insight into the post-nucleation state. Rigid-body fitting of our cryo-EM structures into this reconstruction suggests that the MT lattice is nucleated by spokes 2 through 14 of the γ-tubulin helix, which entails spokes 13 and 14 becoming more structured than what is observed in apo γ-TuRC. Together, our results allow us to propose a model for conformational changes in γ-TuRC and how these may facilitate MT formation in a cell.

3.
Elife ; 112022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36515268

RESUMO

To establish the microtubule cytoskeleton, the cell must tightly regulate when and where microtubules are nucleated. This regulation involves controlling the initial nucleation template, the γ-tubulin ring complex (γTuRC). Although γTuRC is present throughout the cytoplasm, its activity is restricted to specific sites including the centrosome and Golgi. The well-conserved γ-tubulin nucleation activator (γTuNA) domain has been reported to increase the number of microtubules (MTs) generated by γTuRCs. However, previously we and others observed that γTuNA had a minimal effect on the activity of antibody-purified Xenopus γTuRCs in vitro (Thawani et al., eLife, 2020; Liu et al., 2020). Here, we instead report, based on improved versions of γTuRC, γTuNA, and our TIRF assay, the first real-time observation that γTuNA directly increases γTuRC activity in vitro, which is thus a bona fide γTuRC activator. We further validate this effect in Xenopus egg extract. Via mutation analysis, we find that γTuNA is an obligate dimer. Moreover, efficient dimerization as well as γTuNA's L70, F75, and L77 residues are required for binding to and activation of γTuRC. Finally, we find that γTuNA's activating effect opposes inhibitory regulation by stathmin. In sum, our improved assays prove that direct γTuNA binding strongly activates γTuRCs, explaining previously observed effects of γTuNA expression in cells and illuminating how γTuRC-mediated microtubule nucleation is regulated.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Centrossomo/metabolismo , Xenopus laevis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Annu Rev Cell Dev Biol ; 38: 1-23, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759800

RESUMO

The microtubule (MT) cytoskeleton provides the architecture that governs intracellular organization and the regulated motion of macromolecules through the crowded cytoplasm. The key to establishing a functioning cytoskeletal architecture is regulating when and where new MTs are nucleated. Within the spindle, the vast majority of MTs are generated through a pathway known as branching MT nucleation, which exponentially amplifies MT number in a polar manner. Whereas other MT nucleation pathways generally require a complex organelle such as the centrosome or Golgi apparatus to localize nucleation factors, the branching site is based solely on a simple, preformed MT, making it an ideal system to study MT nucleation. In this review, we address recent developments in characterizing branching factors, the branching reaction, and its regulation, as well as branching MT nucleation in systems beyond the spindle and within human disease.


Assuntos
Centro Organizador dos Microtúbulos , Fuso Acromático , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
5.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722392

RESUMO

Upregulation of carbonic anhydrase IX (CA IX) is associated with several aggressive forms of cancer and promotes metastasis. CA IX is normally constitutively expressed at low levels in selective tissues associated with the gastrointestinal tract, but is significantly upregulated upon hypoxia in cancer. CA IX is a multi-domain protein, consisting of a cytoplasmic region, a single-spanning transmembrane helix, an extracellular CA catalytic domain, and a proteoglycan-like (PG) domain. Considering the important role of CA IX in cancer progression and the presence of the unique PG domain, little information about the PG domain is known. Here, we report biophysical characterization studies to further our knowledge of CA IX. We report the 1.5 Å resolution crystal structure of the wild-type catalytic domain of CA IX as well as small angle X-ray scattering and mass spectrometry of the entire extracellular region. We used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to characterize the spontaneous degradation of the CA IX PG domain and confirm that it is only the CA IX catalytic domain that forms crystals. Small angle X-ray scattering analysis of the intact protein indicates that the PG domain is not randomly distributed and adopts a compact distribution of shapes in solution. The observed dynamics of the extracellular domain of CA IX could have physiological relevance, including observed cleavage and shedding of the PG domain.


Assuntos
Antígenos de Neoplasias/química , Anidrase Carbônica IX/química , Proteínas de Neoplasias/química , Neoplasias/enzimologia , Cristalografia por Raios X , Humanos , Domínios Proteicos
6.
J Struct Biol ; 205(2): 147-154, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639924

RESUMO

Up-regulation of carbonic anhydrase IX (CA IX) expression is an indicator of metastasis and associated with poor cancer patient prognosis. CA IX has emerged as a cancer drug target but development of isoform-specific inhibitors is challenging due to other highly conserved CA isoforms. In this study, a CA IXmimic construct was used (CA II with seven point mutations introduced, to mimic CA IX active site) while maintaining CA II solubility that make it amenable to crystallography. The structures of CA IXmimic unbound and in complex with saccharin (SAC) and a saccharin-glucose conjugate (SGC) were determined using joint X-ray and neutron protein crystallography. Previously, SAC and SGC have been shown to display CA isoform inhibitor selectivity in assays and X-ray crystal structures failed to reveal the basis of this selectivity. Joint X-ray and neutron crystallographic studies have shown active site residues, solvent, and H-bonding re-organization upon SAC and SGC binding. These observations highlighted the importance of residues 67 (Asn in CA II, Gln in CA IX) and 130 (Asp in CA II, Arg in CA IX) in selective CA inhibitor targeting.


Assuntos
Anidrases Carbônicas/metabolismo , Cristalografia por Raios X/métodos , Sacarina/farmacologia , Domínio Catalítico , Nêutrons , Ligação Proteica
7.
Methods Mol Biol ; 1826: 9-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30194591

RESUMO

Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.


Assuntos
Archaea/química , Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Serpinas/química , Animais , Cristalografia por Raios X , Humanos , Domínios Proteicos
8.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 6): 327-330, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870015

RESUMO

Recent advances in X-ray free-electron laser (XFEL) sources have permitted the study of protein dynamics. Femtosecond X-ray pulses have allowed the visualization of intermediate states in enzyme catalysis. In this study, the growth of carbonic anhydrase II microcrystals (40-80 µm in length) suitable for the collection of XFEL diffraction data at the Pohang Accelerator Laboratory is demonstrated. The crystals diffracted to 1.7 Šresolution and were indexed in space group P21, with unit-cell parameters a = 42.2, b = 41.2, c = 72.0 Å, ß = 104.2°. These preliminary results provide the necessary framework for time-resolved experiments to study carbonic anhydrase catalysis at XFEL beamlines.


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica II/genética , Sequência de Aminoácidos , Cristalização/métodos , Cristalografia por Raios X/métodos , Lasers
9.
Metabolites ; 8(1)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495652

RESUMO

The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.

10.
IUCrJ ; 5(Pt 1): 93-102, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29354275

RESUMO

Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3-. Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (WI') is observed next to the previously observed intermediate water WI, and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH- on CO2. This mechanism explains how the zinc-bound water (WZn) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first 'physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.

11.
Biochemistry ; 57(7): 1096-1107, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29227673

RESUMO

The Myxomavirus-derived protein Serp-1 has potent anti-inflammatory activity in models of vasculitis, lupus, viral sepsis, and transplant. Serp-1 has also been tested successfully in a Phase IIa clinical trial in unstable angina, representing a "first-in-class" therapeutic. Recently, peptides derived from the reactive center loop (RCL) have been developed as stand-alone therapeutics for reducing vasculitis and improving survival in MHV68-infected mice. However, both Serp-1 and the RCL peptides lose activity in MHV68-infected mice after antibiotic suppression of intestinal microbiota. Here, we utilize a structure-guided approach to design and test a series of next-generation RCL peptides with improved therapeutic potential that is not reduced when the peptides are combined with antibiotic treatments. The crystal structure of cleaved Serp-1 was determined to 2.5 Å resolution and reveals a classical serpin structure with potential for serpin-derived RCL peptides to bind and inhibit mammalian serpins, plasminogen activator inhibitor 1 (PAI-1), anti-thrombin III (ATIII), and α-1 antitrypsin (A1AT), and target proteases. Using in silico modeling of the Serp-1 RCL peptide, S-7, we designed several modified RCL peptides that were predicted to have stronger interactions with human serpins because of the larger number of stabilizing hydrogen bonds. Two of these peptides (MPS7-8 and -9) displayed extended activity, improving survival where activity was previously lost in antibiotic-treated MHV68-infected mice (P < 0.0001). Mass spectrometry and kinetic assays suggest interaction of the peptides with ATIII, A1AT, and target proteases in mouse and human plasma. In summary, we present the next step toward the development of a promising new class of anti-inflammatory serpin-based therapeutics.


Assuntos
Fatores Imunológicos/química , Myxoma virus/química , Peptídeos/química , Serpinas/química , Proteínas Virais/química , Animais , Células CHO , Cricetulus , Cristalografia por Raios X , Humanos , Fatores Imunológicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Peptídeos/farmacologia , Infecções por Poxviridae/virologia , Conformação Proteica , Coelhos , Serpinas/farmacologia , Proteínas Virais/farmacologia
12.
ACS Med Chem Lett ; 8(9): 941-946, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28947941

RESUMO

We report the synthesis, biological evaluation, and structural study of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives. These compounds have been developed as inhibitors of specific isoforms of carbonic anhydrase (CA), with potential as prototypes of a new class of chemotherapeutics. Both X-ray crystallography and computational modeling provide insights into the CA inhibition mechanism. Results indicate that this chemotype produces an indirect interference with the zinc ion, thus behaving differently from other related nonclassical inhibitors. Among the tested compounds, 2c with Ki = 0.21 µM toward hCA XII demonstrated significant antiproliferative activity against hypoxic tumor cell lines. Taken together, the results thus provide the basis of structural determinants for the development of novel anticancer agents.

13.
Eur J Med Chem ; 132: 184-191, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28363153

RESUMO

Ureido-substituted benzenesulfonamides (USBs) show great promise as selective and potent inhibitors for human carbonic anhydrase hCA IX and XII, with one such compound (SLC-0111/U-F) currently in clinical trials (clinical trials.gov, NCT02215850). In this study, the crystal structures of both hCA II (off-target) and an hCA IX-mimic (target) in complex with selected USBs (U-CH3, U-F, and U-NO2), at resolutions of 1.9 Å or better, are presented, and demonstrate differences in the binding modes within the two isoforms. The presence of residue Phe 131 in hCA II causes steric hindrance (U-CH3, 1765 nM; U-F, 960 nM; U-NO2, 15 nM) whereas in hCA IX (U-CH3, 7 nM; U-F, 45 nM; U-NO2, 1 nM) and hCA XII (U-CH3, 6 nM; U-F, 4 nM; U-NO2, 6 nM), 131 is a Val and Ala, respectively, allows for more favorable binding. Our results provide insight into the mechanism of USB selective inhibition and useful information for structural design and drug development, including synthesis of hybrid USB compounds with improved physiochemical properties.


Assuntos
Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/química , Sulfonamidas/química , Ureia/análogos & derivados , Sítios de Ligação , Cristalografia por Raios X , Humanos , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Benzenossulfonamidas
14.
Chembiochem ; 18(2): 213-222, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27860128

RESUMO

Carbonic anhydrases (CAs) are implicated in a wide range of diseases, including the upregulation of isoforms CA IX and XII in many aggressive cancers. However, effective inhibition of disease-implicated CAs should minimally affect the ubiquitously expressed isoforms, including CA I and II, to improve directed distribution of the inhibitors to the cancer-associated isoforms and reduce side effects. Four benzenesulfonamide-based inhibitors were synthesized by using the tail approach and displayed nanomolar affinities for several CA isoforms. The crystal structures of the inhibitors bound to a CA IX mimic and CA II are presented. Further in silico modeling was performed with the inhibitors docked into CA I and XII to identify residues that contributed to or hindered their binding interactions. These structural studies demonstrated that active-site residues lining the hydrophobic pocket, especially positions 92 and 131, dictate the positional binding and affinity of inhibitors, whereas the tail groups modulate CA isoform specificity. Geometry optimizations were performed on each ligand in the crystal structures and showed that the energetic penalties of the inhibitor conformations were negligible compared to the gains from active-site interactions. These studies further our understanding of obtaining isoform specificity when designing small molecule CA inhibitors.


Assuntos
Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/metabolismo , Sulfonamidas/metabolismo , Sítios de Ligação , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
15.
J Biol Chem ; 291(43): 22741-22756, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27576689

RESUMO

Multidrug resistance to current Food and Drug Administration-approved HIV-1 protease (PR) inhibitors drives the need to understand the fundamental mechanisms of how drug pressure-selected mutations, which are oftentimes natural polymorphisms, elicit their effect on enzyme function and resistance. Here, the impacts of the hinge-region natural polymorphism at residue 35, glutamate to aspartate (E35D), alone and in conjunction with residue 57, arginine to lysine (R57K), are characterized with the goal of understanding how altered salt bridge interactions between the hinge and flap regions are associated with changes in structure, motional dynamics, conformational sampling, kinetic parameters, and inhibitor affinity. The combined results reveal that the single E35D substitution leads to diminished salt bridge interactions between residues 35 and 57 and gives rise to the stabilization of open-like conformational states with overall increased backbone dynamics. In HIV-1 PR constructs where sites 35 and 57 are both mutated (e.g. E35D and R57K), x-ray structures reveal an altered network of interactions that replace the salt bridge thus stabilizing the structural integrity between the flap and hinge regions. Despite the altered conformational sampling and dynamics when the salt bridge is disrupted, enzyme kinetic parameters and inhibition constants are similar to those obtained for subtype B PR. Results demonstrate that these hinge-region natural polymorphisms, which may arise as drug pressure secondary mutations, alter protein dynamics and the conformational landscape, which are important thermodynamic parameters to consider for development of inhibitors that target for non-subtype B PR.


Assuntos
Evolução Molecular , Protease de HIV , HIV-1 , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Polimorfismo Genético , Substituição de Aminoácidos , Cristalografia por Raios X , Protease de HIV/química , Protease de HIV/genética , HIV-1/enzimologia , HIV-1/genética , Humanos
16.
Biochemistry ; 55(33): 4642-53, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27439028

RESUMO

Human carbonic anhydrase IX (hCA IX) expression in many cancers is associated with hypoxic tumors and poor patient outcome. Inhibitors of hCA IX have been used as anticancer agents with some entering Phase I clinical trials. hCA IX is transmembrane protein whose catalytic domain faces the extracellular tumor milieu, which is typically associated with an acidic microenvironment. Here, we show that the catalytic domain of hCA IX (hCA IX-c) exhibits the necessary biochemical and biophysical properties that allow for low pH stability and activity. Furthermore, the unfolding process of hCA IX-c appears to be reversible, and its catalytic efficiency is thought to be correlated directly with its stability between pH 3.0 and 8.0 but not above pH 8.0. To rationalize this, we determined the X-ray crystal structure of hCA IX-c to 1.6 Å resolution. Insights from this study suggest an understanding of hCA IX-c stability and activity in low-pH tumor microenvironments and may be applicable to determining pH-related effects on enzymes.


Assuntos
Anidrase Carbônica IX/química , Concentração de Íons de Hidrogênio , Anidrase Carbônica IX/genética , Catálise , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Espectrometria de Massas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
Bioorg Med Chem ; 24(5): 976-81, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26810836

RESUMO

SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Anidrases Carbônicas/química , Cristalografia por Raios X , Halogenação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/farmacologia , Benzenossulfonamidas
18.
Bioorg Med Chem Lett ; 26(2): 401-405, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26691758

RESUMO

We report a sulfonamide/sulfamate inhibition study of the α-carbonic anhydrase (CA, EC 4.2.1.1) present in the gammaproteobacterium Thiomicrospira crunogena XCL-2, a mesophilic hydrothermal vent-isolate organism, TcruCA. As Thiomicrospira crunogena is one of thousands of marine organisms that uses CA for metabolic regulation, the effect of sulfonamide inhibition has been considered. Sulfonamide-based drugs have been widely used in a variety of antibiotics, and bioelimination of these compounds results in exposure of these compounds to marine life. The enzyme was highly inhibited, with Ki values ranging from 2.5 to 40.7nM by a variety of sulfonamides including acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide and benzenesulfonamides incorporating 4-hydroxyalkyl moieties. Less effective inhibitors were topiramate, zonisamide, celecoxib, saccharin and hydrochlorothiazide as well as simple benzenesulfonamides incorporating amino, halogeno, alkyl, aminoalkyl and other moieties in the ortho- or para-positions of the aromatic ring (Kis of 202-933nM). The active site interactions between TcruCA and three clinically-used CA inhibitors, acetazolamide (Diamox®), dorzolamide (Trusopt®), and brinzolamide (Azopt®) are studied using molecular docking to provide insight into the reported Ki values. Comparison between various enzymes belonging to this family may also bring interesting hints in these fascinating phenomena.


Assuntos
Antibacterianos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/enzimologia , Sulfonamidas/farmacologia , Antibacterianos/química , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/química , Simulação de Acoplamento Molecular , Sulfonamidas/química
19.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 10): 1352-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457530

RESUMO

Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.


Assuntos
Antígenos de Neoplasias/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Neoplasias/enzimologia , Sacarose/metabolismo , Sítios de Ligação , Anidrase Carbônica IX , Cristalização , Cristalografia por Raios X , Fluorometria , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética
20.
Protein Sci ; 24(11): 1800-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26266677

RESUMO

Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼ 4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems.


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Lisina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Acetilação , Anidrase Carbônica II/genética , Escherichia coli/genética , Humanos , Lisina/química , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...