Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(15): 5864-9, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23533279

RESUMO

Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting "knock-in" mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1-34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it.


Assuntos
Osso e Ossos/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/análogos & derivados , Receptor Tipo 1 de Hormônio Paratireóideo/fisiologia , Animais , Cálcio/sangue , Cálcio/urina , AMP Cíclico/sangue , AMP Cíclico/urina , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Homeostase , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatos/sangue , Fosfatos/urina , Fosforilação , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
2.
Endocrinology ; 150(8): 3567-75, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19423757

RESUMO

GNAS gives rise to multiple imprinted gene products, including the alpha-subunit of the stimulatory G protein (Gs(alpha)) and its variant XL(alpha)s. Based on genomic sequence, the translation of XL(alpha)s begins from the middle of a long open reading frame, suggesting the existence of an N-terminally extended variant termed extralarge XLalphas (XXL(alpha)s). Although XXL(alpha), like Gs(alpha) and XL(alpha)s, would be affected by most disease-causing GNAS mutations, its authenticity and biological significance remained unknown. Here we identified a mouse cDNA clone that comprises the entire open reading frame encoding XXL(alpha)s. Whereas XXL(alpha)s mRNA was readily detected in mouse heart by RT-PCR, it appeared virtually absent in insulinoma-derived INS-1 cells. By Northern blots and RT-PCR, XXL(alpha)s mRNA was detected primarily in the mouse brain, cerebellum, and spleen. Immunohistochemistry using a specific anti-XXL(alpha)s antibody demonstrated XXL(alpha)s protein in multiple brain areas, including dorsal hippocampus and cortex. In transfected cells, full-length human XXL(alpha)s was localized to the plasma membrane and mediated isoproterenol- and cholera toxin-stimulated cAMP accumulation. XXL(alpha)s-R844H, which bears a mutation analogous to that in the constitutively active Gs(alpha) mutant Gs(alpha)-R201H (gsp oncogene), displayed elevated basal signaling. However, unlike Gs(alpha)-R201H, which mostly remains in the cytoplasm, both XXL(alpha)s-R844H and a constitutively active XL(alpha)s mutant localized to the plasma membrane. Hence, XXL(alpha)s is a distinct GNAS product and can mimic Gs(alpha), but the constitutively active XXL(alpha)s and Gs(alpha) mutants differ from each other regarding subcellular targeting. Our findings suggest that XXL(alpha)s deficiency or hyperactivity may contribute to the pathogenesis of diseases caused by GNAS mutations.


Assuntos
Membrana Celular/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Northern Blotting , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , AMP Cíclico/metabolismo , Citoplasma/metabolismo , DNA Complementar , Hipocampo/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Miocárdio/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...