Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(33): 16216-16221, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358622

RESUMO

The deposition of phosphorus (P) from African dust is believed to play an important role in bolstering primary productivity in the Amazon Basin and Tropical Atlantic Ocean (TAO), leading to sequestration of carbon dioxide. However, there are few measurements of African dust in South America that can robustly test this hypothesis and even fewer measurements of soluble P, which is readily available for stimulating primary production in the ocean. To test this hypothesis, we measured total and soluble P in long-range transported aerosols collected in Cayenne, French Guiana, a TAO coastal site located at the northeastern edge of the Amazon. Our measurements confirm that in boreal spring when African dust transport is greatest, dust supplies the majority of P, of which 5% is soluble. In boreal fall, when dust transport is at an annual minimum, we measured unexpectedly high concentrations of soluble P, which we show is associated with the transport of biomass burning (BB) from southern Africa. Integrating our results into a chemical transport model, we show that African BB supplies up to half of the P deposited annually to the Amazon from transported African aerosol. This observational study links P-rich BB aerosols from Africa to enhanced P deposition in the Amazon. Contrary to current thought, we also show that African BB is a more important source of soluble P than dust to the TAO and oceans in the Southern Hemisphere and may be more important for marine productivity, particularly in boreal summer and fall.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Fósforo/metabolismo , Aerossóis/química , África Austral , Oceano Atlântico , Atmosfera , Biomassa , Dióxido de Carbono/efeitos adversos , Dióxido de Carbono/metabolismo , Guiana Francesa , Oceanos e Mares , Estações do Ano , América do Sul
2.
Philos Trans R Soc Lond B Biol Sci ; 368(1619): 20120154, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23610165

RESUMO

Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.


Assuntos
Fertilizantes/análise , Glycine max , Fósforo/química , Agricultura , Óxido de Alumínio/química , Brasil , Conservação dos Recursos Naturais/métodos , Hidrologia , Ferro/química , Nitratos/química , Estações do Ano , Solo/química , Temperatura , Água/química , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA