Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 33(3): ar22, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108073

RESUMO

Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis (STADIA) that identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term "stutters." During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared with previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.


Assuntos
Gagueira , Citoesqueleto/metabolismo , Humanos , Microtúbulos/metabolismo , Gagueira/metabolismo , Tubulina (Proteína)/metabolismo
2.
Methods Cell Biol ; 158: 117-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32423646

RESUMO

Quantification of microtubule (MT) dynamic instability (DI) is essential to mechanistic dissection of MT assembly and the activities of MT binding proteins. Typical methods for quantifying MT dynamics assume that MT behavior consists of growth and shortening phases, with instantaneous transitions (rescues and catastrophes) in between. However, examination of DI data at high temporal and spatial resolution reveals the presence of ambiguous behaviors that cannot easily fit into these categories. Failure to objectively recognize and quantify these behaviors could reduce the reproducibility of DI data and impact attempts to dissect mechanisms. To address these problems, we recently developed STADIA (Statistical Tool for Automated Dynamic Instability Analysis), a MT analysis software package that uses length-history data as input and is (presently) implemented in MATLAB. STADIA uses machine learning methods to objectively analyze and quantify macro-level DI behaviors exhibited by MTs, including variable rates of growth and shortening and a newly quantified DI phase: stutter. Here we overview the process of using STADIA to quantify MT dynamics and provide a set of concrete protocols for using STADIA to process and analyze MT length history data.


Assuntos
Microtúbulos/metabolismo , Software , Estatística como Assunto , Algoritmos , Automação
3.
Mol Biol Cell ; 31(7): 589-618, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31577530

RESUMO

The concept of critical concentration (CC) is central to understanding the behavior of microtubules (MTs) and other cytoskeletal polymers. Traditionally, these polymers are understood to have one CC, measured in multiple ways and assumed to be the subunit concentration necessary for polymer assembly. However, this framework does not incorporate dynamic instability (DI), and there is work indicating that MTs have two CCs. We use our previously established simulations to confirm that MTs have (at least) two experimentally relevant CCs and to clarify the behavior of individuals and populations relative to the CCs. At free subunit concentrations above the lower CC (CCElongation), growth phases of individual filaments can occur transiently; above the higher CC (CCNetAssembly), the population's polymer mass will increase persistently. Our results demonstrate that most experimental CC measurements correspond to CCNetAssembly, meaning that "typical" DI occurs below the concentration traditionally considered necessary for polymer assembly. We report that [free tubulin] at steady state does not equal CCNetAssembly, but instead approaches CCNetAssembly asymptotically as [total tubulin] increases, and depends on the number of stable MT nucleation sites. We show that the degree of separation between CCElongation and CCNetAssembly depends on the rate of nucleotide hydrolysis. This clarified framework helps explain and unify many experimental observations.


Assuntos
Microtúbulos/metabolismo , Nucleotídeos/metabolismo , Simulação por Computador , Hidrólise , Cinética , Modelos Biológicos , Polímeros/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...