Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(29): 19917-27, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24891512

RESUMO

Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO.


Assuntos
Hipóxia Celular/fisiologia , Ferro/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , S-Nitrosotióis/metabolismo , Animais , Linhagem Celular , Desferroxamina/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/metabolismo , Quelantes de Ferro/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
PLoS One ; 9(3): e91813, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663218

RESUMO

Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 µM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of NO are approached.


Assuntos
Catalase/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/metabolismo , Anaerobiose/efeitos dos fármacos , Antibacterianos/farmacologia , Catalase/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Transcrição Gênica/efeitos dos fármacos
3.
Eur J Pharmacol ; 724: 92-101, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24362110

RESUMO

Disturbances in myocyte calcium homeostasis are hypothesized to be one cause for cardiac arrhythmia. The full development of this hypothesis requires (i) the identification of all sources of arrhythmogenic calcium and (ii) an understanding of the mechanism(s) through which calcium initiates arrhythmia. To these ends we superfused rat left atria with the late sodium current activator type II Anemonia sulcata toxin (ATXII). This toxin prolonged atrial action potentials, induced early afterdepolarization, and provoked triggered activity. The calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 (N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphon-amide) suppressed ATXII triggered activity but its inactive congener KN-92 (2-[N-(4-methoxy benzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) did not. Neither drug affected normal atrial contractility. Calcium entry via L-type channels or calcium leakage from sarcoplasmic reticulum stores are not critical for this type of ectopy as neither verapamil ((RS)-2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl]-(methyl)amino}-2-prop-2-ylpentanenitrile) nor ryanodine affected ATXII triggered activity. By contrast, inhibitors of the voltage independent arachidonate-regulated calcium (ARC) channel and the store-operated calcium channel specifically suppressed ATXII triggered activity without normalizing action potentials or affecting atrial contractility. Inhibitors of cytosolic calcium-dependent phospholipase A2 also suppressed triggered activity suggesting that this lipase, which generates free arachidonate, plays a key role in ATXII ectopy. Thus, increased left atrial late sodium current appears to activate atrial Orai-linked ARC and store operated calcium channels, and these voltage-independent channels may be unexpected sources for the arrhythmogenic calcium that underlies triggered activity.


Assuntos
Função Atrial/efeitos dos fármacos , Canais de Cálcio/fisiologia , Cardiotônicos/farmacologia , Venenos de Cnidários/farmacologia , Átrios do Coração/efeitos dos fármacos , Sódio/fisiologia , Animais , Ácido Araquidônico/fisiologia , Benzilaminas/farmacologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Inibidores de Fosfolipase A2/farmacologia , Ratos , Sulfonamidas/farmacologia
5.
Eur J Oral Sci ; 119(6): 447-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22112030

RESUMO

This study compared SYBR Green real-time quantitative PCR (qPCR) with standard plate counting for the enumeration of Streptococcus mutans in oral samples. Oral samples (n = 710) were collected from high-caries-risk children for quantification of S. mutans by qPCR using primer pairs. The S. mutans copy number was calculated with reference to a qPCR quantification cycle (Cq) standard curve and compared with the absorbance value at 600 nm of a standard suspension of S. mutans UA159. The S. mutans copy number results were evaluated in relation to standard plate count (SPC) results obtained from each sample following culture on Petri plates containing S. mutans selective media and reported as colony-forming units (CFUs). The mean S. mutans copy number calculated from qPCR was higher than the SPC CFUs (1.3 × 10(6) and 1.5 × 10(5) CFUs, respectively). The qPCR values were usually higher in individual samples and qPCR detected the presence of S. mutans 84% (231/276) of the time that the SPC did not, compared with 33% (4/12) of the time when qPCR failed to detect S. mutans and the SPC did. The qPCR technique was found to be more sensitive for detection of S. mutans from oral samples, a method that is not dependent on the viability of the sample taken and therefore is proposed as a more reliable and efficient means of quantification of S. mutans.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Cárie Dentária/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Saliva/microbiologia , Streptococcus mutans/isolamento & purificação , Criança , Pré-Escolar , Contagem de Colônia Microbiana , Cárie Dentária/prevenção & controle , Suscetibilidade à Cárie Dentária , Humanos , Lactente , Sensibilidade e Especificidade
6.
J Biol Chem ; 283(43): 28926-33, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18480062

RESUMO

One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.


Assuntos
Ferro/química , Óxido Nítrico/metabolismo , Animais , Antioxidantes/química , Linhagem Celular , Quelantes/química , Quelantes/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Hemoglobinas/química , Homeostase , Substâncias Macromoleculares , Camundongos , Microscopia de Fluorescência/métodos , Modelos Químicos , Nitrogênio/química , Compostos de Sulfidrila/química
7.
Nucleic Acids Res ; 33(14): 4507-18, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16091628

RESUMO

TIA-1 related protein binds avidly to uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes, including interleukin (IL)-8 and vascular endothelial growth factor (VEGF). The protein has diverse regulatory roles, which in part depend on the locus of binding within the transcript, including translational control, splicing and apoptosis. Here, we observed selective and potent inhibition of TIAR-RNP complex formation with IL-8 and VEGF 3'-untranslated regions (3'-UTRs) using thymidine-rich deoxyoligonucleotide (ODN) sequences derived from the VEFG 3'-UTR. We show by ultraviolet crosslinking and electrophoretic mobility shift assays that TIAR can bind directly to single-stranded, thymidine-rich ODNs but not to double-stranded ODNs containing the same sequence. TIAR had a nearly 6-fold greater affinity for DNA than RNA (K(d)app = 1.6x10(-9) M versus 9.4 x 10(-9) M). Truncation of TIAR indicated that the high affinity DNA-binding site overlaps with the RNA-binding site involving RNA recognition motif 2 (RRM2). However, RRM1 alone could also bind to DNA. Finally, we show that TIAR can be displaced from single-stranded DNA by active transcription through the binding site. These results provide a potential mechanism by which TIAR can shuttle between RNA and DNA ligands.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Humanos , Interleucina-8/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Proteínas de Ligação a RNA/química , Timidina/análise , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...