Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1386719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694510

RESUMO

Introduction: B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods: We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results: We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion: Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.


Assuntos
Linfócitos B , Sinalização do Cálcio , Ativação Linfocitária , Camundongos Knockout , Receptores de Antígenos de Linfócitos B , Canais de Cátion TRPV , Animais , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Cálcio/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
Immunol Rev ; 291(1): 104-122, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402507

RESUMO

Although calcium signaling and the important role of calcium release-activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B-cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Canais Iônicos/metabolismo , Ativação Linfocitária/imunologia , Animais , Biomarcadores , Humanos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais
4.
Sci Signal ; 11(533)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871912

RESUMO

Members of the transient receptor potential (TRP) family of ion channels are cellular sensors involved in numerous physiological and pathological processes. We identified the TRP subfamily M member 7 (TRPM7) channel-kinase as a previously uncharacterized regulator of B cell activation. We showed that TRPM7 played a critical role in the early events of B cell activation through both its ion channel and kinase functions. DT40 B cells deficient in TRPM7 or expressing a kinase-deficient mutant of TRPM7 showed defective gathering of antigen and prolonged B cell receptor (BCR) signaling. We showed that lipid metabolism was altered in TRPM7-deficient cells and in cells expressing a kinase-deficient mutant of TRPM7 and suggest that PLC-γ2 may be a target of the kinase activity of TRPM7. Primary B cells that expressed less TRPM7 or were treated with a pharmacological inhibitor of TRPM7 also displayed defective antigen gathering and increased BCR signaling. Finally, we demonstrated that blocking TRPM7 function compromised antigen internalization and presentation to T cells. These data suggest that TRPM7 controls an essential process required for B cell affinity maturation and the production of high-affinity antibodies.


Assuntos
Apresentação de Antígeno , Linfócitos B/metabolismo , Canais de Cátion TRPM/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Linfócitos B/citologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...