Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265476

RESUMO

OBJECTIVESAntibody testing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in detecting previous exposures and analyzing vaccine-elicited immune responses. Here, we describe a scalable solution to detect and quantify SARS-CoV-2 antibodies, discriminate between natural infection- and vaccination-induced responses, and assess antibody-mediated inhibition of the spike-angiotensin converting enzyme 2 (ACE2) interaction. METHODSWe developed methods and reagents to detect SARS-CoV-2 antibodies by enzyme-linked immunosorbent assay (ELISA). The main assays focus on the parallel detection of immunoglobulin (Ig)Gs against the spike trimer, its receptor binding domain (RBD), and nucleocapsid (N). We automated a surrogate neutralization (sn)ELISA that measures inhibition of ACE2-spike or -RBD interactions by antibodies. The assays were calibrated to a World Health Organization reference standard. RESULTSOur single-point IgG-based ELISAs accurately distinguished non-infected and infected individuals. For seroprevalence assessment (in a non-vaccinated cohort), classifying a sample as positive if antibodies were detected for [≥] 2 of the 3 antigens provided the highest specificity. In vaccinated cohorts, increases in anti-spike and -RBD (but not -N) antibodies are observed. We present detailed protocols for serum/plasma or dried blood spots analysis performed manually and on automated platforms. The snELISA can be performed automatically at single points, increasing its scalability. CONCLUSIONSMeasuring antibodies to three viral antigens and identify neutralizing antibodies capable of disrupting spike-ACE2 interactions in high-throughput enables large-scale analyses of humoral immune responses to SARS-CoV-2 infection and vaccination. The reagents are available to enable scaling up of standardized serological assays, permitting inter-laboratory data comparison and aggregation.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261721

RESUMO

Prioritizing Ontarios long-term care home (LTCH) residents for vaccination against severe acute respiratory syndrome coronavirus 2 has drastically reduced their disease burden; however, recent LTCH outbreaks of variants of concern (VOCs) have raised questions regarding their immune responses. In 198 residents, mRNA vaccine dose 1 elicited partial spike and receptor binding domain antibody responses, while the second elicited a response at least equivalent to convalescent individuals in most residents. Residents administered mRNA-1273 (Moderna) mounted stronger total and neutralizing antibody responses than those administered BNT162b2 (Pfizer-BioNTech). Two to four weeks after dose 2, residents (n = 119, median age 88) produced 4.8-6.3-fold fewer neutralizing antibodies than staff (n = 78; median age 47) against wild-type (with D614G) pseudotyped lentivirus, and residents administered BNT162b2 produced 3.89-fold fewer neutralizing antibodies than those who received mRNA-1273. These effects were exacerbated upon serum challenge with pseudotyped VOC spike, with up to 7.94-fold reductions in B.1.351 (Beta) neutralization. Cumulatively, weaker vaccine stimulation, age/comorbidities, and the VOC produced an [~]130-fold reduction in apparent neutralization titers in LTCH residents and 37.9% of BNT162b2-vaccinated residents had undetectable neutralizing antibodies to B.1.351. Continued immune response surveillance and additional vaccine doses may be required in this population with known vulnerabilities.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261297

RESUMO

Although SARS-CoV-2 infects the upper respiratory tract, we know little about the amount, type, and kinetics of antibodies (Ab) generated at this site in response to intramuscular COVID-19 vaccination, and whether these Ab protect against subsequent "breakthrough" infections. We collected longitudinal serum and saliva samples from participants receiving two doses of mRNA COVID-19 vaccines over a 6-month period and measured the relative level of anti-Spike and anti-Receptor Binding Domain (RBD) Ab. We detected anti-Spike/RBD IgG and IgA and associated secretory component in the saliva of most participants receiving 1 dose of mRNA vaccine. Administration of a second dose of mRNA boosted the IgG but not the IgA response, with only 30% of participants remaining positive for IgA at this timepoint. At 6 months post-dose 2, these participants exhibited greatly diminished anti-Spike/RBD IgG and IgA levels concomitant with a reduction in neutralizing activity in the saliva, although the level of secretory component associated anti-Spike was less susceptible to decay. Examining two prospective cohorts of subjects that were monitored for infections post-vaccination, we found that participants who were subsequently infected with SARS-CoV-2 had lower levels of vaccine-induced serum anti-Spike/RBD IgA at 2-4 weeks post-dose 2 compared to participants who did not experience an infection, whereas IgG levels were comparable between groups. These data emphasize the importance of developing COVID-19 vaccines that elicit a durable IgA response. One-Sentence SummaryOur study delves into whether intra-muscular mRNA vaccination regimes confer a local IgA response in the oral cavity and whether the IgA response is associated with protection against breakthrough infection.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256992

RESUMO

BackgroundMultiple anti-SARS-CoV-2 immunoassays are available, but no gold standard exists. We assessed four assays using various methodological approaches to estimate SARS-COV-2 seroprevalence during the first COVID-19 wave in Canada. MethodsThis serial cross-sectional study was conducted using plasma samples from healthy blood donors between April-September 2020. Qualitative assessment of SARS-CoV-2 IgG antibodies was based on four assays: Abbott Architect SARS-Cov-2 IgG assay (target nucleocapsid) (Abbott-NP) and three in-house IgG ELISA assays (target spike glycoprotein (Spike), spike receptor binding domain (RBD), and nucleocapsid (NP)). Seroprevalence was estimated using multiple composite reference standards (CRS) and by a series of Bayesian Latent Class Models (BLCM) (using uninformative, weakly, and informative priors). Results8999 blood samples were tested. The Abbott-NP assay consistently estimated seroprevalence to be lower than the ELISA-based assays. Discordance between assays was common, 13 unique diagnostic phenotypes were observed. Only 32 samples (0.4%) were positive by all four assays. BLCM using uninformative priors predicted seroprevalence increased from 0.7% (95% credible interval (CrI); 0.4, 1.0%) in April/May to 0.8% (95% CrI 0.5, 1.2%) in June/July to 1.1% (95% CrI 0.7, 1.6) in August/September. Results from CRS were very similar to the BLCM. Assay characteristics varied considerably over time. Overall spike had the highest sensitivity (89.1% (95% CrI 79.2, 96.9%), while the sensitivity of the Abbott-NP assay waned from 65.3% (95% CrI 43.6, 85.0%) in April/May to 45.9% (95% CrI 27.8, 65.6) by August/September. DiscussionWe found low SARS-CoV-2 seroprevalence rates at the end of the first wave and estimates derived from single assays may be biased. SummaryMultiple anti-SARS-CoV-2 immunoassays are available, but no gold standard exists. We used four unique assays to estimate very low SARS-COV-2 seroprevalence during the first COVID-19 wave in Canada. Caution should be exercised when interpretating seroprevalence estimates from single assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...