Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 17197-17208, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952325

RESUMO

Potassium ion batteries (PIBs) are a viable alternative to lithium-ion batteries for energy storage. Red phosphorus (RP) has attracted a great deal of interest as an anode for PIBs owing to its cheapness, ideal electrode potential, and high theoretical specific capacity. However, the direct preparation of phosphorus-carbon composites usually results in exposure of the RP to the exterior of the carbon layer, which can lead to the deactivation of the active material and the production of "dead phosphorus". Here, the advantage of the π-π bond conjugated structure and high catalytic activity of metal phthalocyanine (MPc) is used to prepare MPc@RP/C composites as a highly stable anode for PIBs. It is shown that the introduction of MPc greatly improves the uneven distribution of the carbon layer on RP, and thus improves the initial Coulombic efficiency (ICE) of PIBs (the ICE of FePc@RP/C is 75.5% relative to 62.9% of RP/C). The addition of MPc promotes the growth of solid electrolyte interphase with high mechanical strength, improving the cycle stability of PIBs (the discharge-specific capacity of FePc@RP/C is 411.9 mAh g-1 after 100 cycles at 0.05 A g-1). Besides, density functional theory theoretical calculations show that MPc exhibits homogeneous adsorption energies for multiple potassiation products, thereby improving the electrochemical reactivity of RP. The use of organic molecules with high electrocatalytic activity provides a universal approach for designing superior high-capacity, large-volume expansion anodes for PIBs.

2.
ACS Nano ; 18(28): 18444-18456, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953611

RESUMO

Rechargeable aqueous batteries adopting Fe-based materials are attracting widespread attention by virtue of high-safety and low-cost. However, the present Fe-based anodes suffer from low electronic/ionic conductivity and unsatisfactory comprehensive performance, which greatly restrict their practicability. Concerning the principle of physical chemistry, fabricating electrodes that could simultaneously achieve ideal thermodynamics and fast kinetics is a promising issue. Herein, hierarchical Fe3O4@Fe foam electrode with enhanced interface/grain boundary engineering is fabricated through an in situ self-regulated strategy. The electrode achieves ultrahigh areal capacity of 31.45 mA h cm-2 (50 mA cm-2), good scale application potential (742.54 mA h for 25 cm2 electrode), satisfied antifluctuation capability, and excellent cycling stability. In/ex situ characterizations further validate the desired thermodynamic and kinetic properties of the electrode endowed with accurate interface regulation, which accounts for salient electrochemical reversibility in a two-stage phase transition and slight energy loss. This work offers a suitable strategy in designing high-performance Fe-based electrodes with comprehensive inherent characteristics for high-safety large-scale energy storage.

3.
Adv Mater ; : e2403848, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837906

RESUMO

All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

4.
ACS Nano ; 18(26): 17304-17313, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904507

RESUMO

Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe2+. Herein, we propose a H+ and Fe2+ co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and Na4Fe3(PO4)2(P2O7) (NFPP). This is achieved through an electrochemical activation step during which a FeOOH nanowire layer is formed in situ on the cathode. This layer facilitates H+ co-intercalation in AIIBs, resulting in a high specific capacity of 151 mAh g-1 and 93% capacity retention over 500 cycles for activated FeHCF cathodes. We found that this activation process can also be applied to other cathode chemistries, such as NFPP, where we found that the cathode capacity is doubled as a result of this process. Overall, the proposed H+/Fe2+ co-insertion electrochemistry expands the range of applications for AIBBs, in particular as a sustainable solution for storing renewable energy.

5.
Angew Chem Int Ed Engl ; : e202407038, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871655

RESUMO

Reconstruction-engineered electrocatalysts with enriched high active Ni species for urea oxidation reaction (UOR) have recently become promising candidates for energy conversion. However, to inhibit the over-oxidation of urea brought by the high valence state of Ni, tremendous efforts are devoted to obtaining low-value products of nitrogen gas to avoid toxic nitrite formation, undesirably causing inefficient utilization of the nitrogen cycle. Herein, we proposed a mediation engineering strategy to significantly boost high-value nitrite formation to help close a loop for the employment of a nitrogen economy. Specifically, platinum-loaded nickel phosphides (Pt-Ni2P) catalysts exhibit a promising nitrite production rate (0.82 mol kWh-1 cm-2), high stability over 66 h of Zn-urea-air battery operation, and 135 h of co-production of nitrite and hydrogen under 200 mA cm-2 in a zero-gap membrane electrode assembly (MEA) system. The in situ spectroscopic characterizations and computational calculations demonstrated that the urea oxidation kinetics is facilitated by enriched dynamic Ni3+ active sites, thus augmenting the "cyanate" UOR pathway. The *NOO desorption was further verified as the rate-determining step for nitrite generation.

6.
Adv Mater ; : e2403371, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702927

RESUMO

Calcium-ion batteries (CIBs) have emerged as a promising alternative for electrochemical energy storage. The lack of high-performance cathode materials severely limits the development of CIBs. Vanadium oxides are particularly attractive as cathode materials for CIBs, and preinsertion chemistry is often used to improve their calcium storage performance. However, the room temperature cycling lifespan of vanadium oxides in organic electrolytes still falls short of 1000 cycles. Here, based on preinsertion chemistry, the cycling life of vanadium oxides is further improved by integrated electrode and electrolyte engineering. Utilizing a tailored Ca electrolyte, the constructed freestanding (NH4)2V6O16·1.35H2O@graphene oxide@carbon nanotube (NHVO-H@GO@CNT) composite cathode achieves a 305 mAh g-1 high capacity and 10 000 cycles record-long life. Additionally, for the first time, a Ca-ion hybrid capacitor full cell is assembled and delivers a capacity of 62.8 mAh g-1. The calcium storage mechanism of NHVO-H@GO@CNT based on a two-phase reaction and the exchange of NH4 + and Ca2+ during cycling are revealed. The lattice self-regulation of V─O layers is observed and the layered vanadium oxides with Ca2+ pillars formed by ion exchange exhibit higher capacity. This work provides novel strategies to enhance the calcium storage performance of vanadium oxides via integrated structural design of electrodes and electrolyte modification.

7.
Angew Chem Int Ed Engl ; : e202406292, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780997

RESUMO

Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries. Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface. The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15 µm Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4 Wh kg-1 and operates for over 60 cycles at a depth-of-discharge of 23 %. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.

8.
Nat Commun ; 15(1): 3354, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637529

RESUMO

The discovery of Mn-Ca complex in photosystem II stimulates research of manganese-based catalysts for oxygen evolution reaction (OER). However, conventional chemical strategies face challenges in regulating the four electron-proton processes of OER. Herein, we investigate alpha-manganese dioxide (α-MnO2) with typical MnIV-O-MnIII-HxO motifs as a model for adjusting proton coupling. We reveal that pre-equilibrium proton-coupled redox transition provides an adjustable energy profile for OER, paving the way for in-situ enhancing proton coupling through a new "reagent"- external electric field. Based on the α-MnO2 single-nanowire device, gate voltage induces a 4-fold increase in OER current density at 1.7 V versus reversible hydrogen electrode. Moreover, the proof-of-principle external electric field-assisted flow cell for water splitting demonstrates a 34% increase in current density and a 44.7 mW/cm² increase in net output power. These findings indicate an in-depth understanding of the role of proton-incorporated redox transition and develop practical approach for high-efficiency electrocatalysis.

9.
Angew Chem Int Ed Engl ; 63(27): e202400032, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653713

RESUMO

Gel-state polymer electrolytes with superior mechanical properties, self-healing abilities and high Li+ transference numbers can be obtained by in situ polymerization of monomers with hydrogen-bonding moieties. However, it is overlooked that the active hydrogen atoms in hydrogen-bond donors experience displacement reactions with lithium metal in lithium metal batteries (LMBs), leading to corrosion of the lithium metal. Herein, it is discovered that the addition of hydrogen-bond acceptors to hydrogen-bond-rich gel-state electrolytes modulates the chemical activity of the active hydrogen atoms via the formation of hydrogen-bonded intermolecular interactions. The characterizations reveal that the added hydrogen-bond acceptors encapsulate the active hydrogen atoms to suppress the interfacial chemical corrosions of lithium metals, thereby enhancing the chemical stability of the polymer structure and interphase. With the employment of this strategy, a 1.1 Ah LiNi0.8Co0.1Mn0.1O2/Li metal pouch cell achieves stable cycling with 96.3 % capacity retention at 100 cycles. This new approach indicates a feasible path for achieving in situ polymerization of highly stable gel-state-based LMBs.

10.
Adv Mater ; 36(24): e2313931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552603

RESUMO

Current reconstruction chemistry studies are mainly operated at the laboratory scale, where the operating parameters are different from those used in industrial water electrolyzers. This gap leads to unclear reconstruction behaviors under industrial conditions and constrains the application of catalysts. Here, this work presents a new reconstruction mechanism and anomalous detachment phenomena observed in leaching-type oxygen-evolving precatalysts under industrial conditions, different from the reported results obtained under laboratory conditions. The identified detachment issues are closely linked to the production of a potassium salt separate phase, which proves sensitive to the local environment, and its instability easily leads to catalyst stripping from the substrate. By establishing detachment critical point and operating parameter-detachment correlation, a targeted reconstruction strategy is proposed to achieve smooth ligand leaching and effectively solve the detachment issue. Theoretical analyses validate the dual-site regulation in directionally reconstructed catalysts with optimized intermediate adsorption. Under industrial conditions, the coupled electrolyzer delivers an industrial-level current density at low cell voltage with prolonged durability, 1 A cm-2 at 2 V for over 340 h. This work bridges the gap of leaching-type precatalysts between laboratory test conditions and industrial operating conditions.

11.
Adv Mater ; 36(23): e2400184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348892

RESUMO

Engineering carbonaceous cathode materials with adequately accessible active sites is crucial for unleashing their charge storage potential. Herein, activated meso-microporous shell carbon (MMSC-A) nanofibers are constructed to enhance the zinc ion storage density by forming a gradient-pore structure. A dominating pore size of 0.86 nm is tailored to cater for the solvated [Zn(H2O)6]2+. Moreover, these gradient porous nanofibers feature rapid ion/electron dual conduction pathways and offer abundant active surfaces with high affinity to electrolyte. When employed in Zn-ion capacitors (ZICs), the electrode delivers significantly enhanced capacity (257 mAh g-1), energy density (200 Wh kg-1 at 78 W kg-1), and cyclic stability (95% retention after 10 000 cycles) compared to nonactivated carbon nanofibers electrode. A series of in situ characterization techniques unveil that the improved Zn2+ storage capability stems from size compatibility between the pores and [Zn(H2O)6]2+, the co-adsorption of Zn2+, H+, and SO4 2-, as well as reversible surface chemical interaction. This work presents an effective method to engineering meso-microporous carbon materials toward high energy-density storage, and also offers insights into the Zn2+ storage mechanism in such gradient-pore structures.

12.
Nanomicro Lett ; 16(1): 128, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381213

RESUMO

Aqueous sodium-ion batteries (ASIBs) and aqueous potassium-ion batteries (APIBs) present significant potential for large-scale energy storage due to their cost-effectiveness, safety, and environmental compatibility. Nonetheless, the intricate energy storage mechanisms in aqueous electrolytes place stringent requirements on the host materials. Prussian blue analogs (PBAs), with their open three-dimensional framework and facile synthesis, stand out as leading candidates for aqueous energy storage. However, PBAs possess a swift capacity fade and limited cycle longevity, for their structural integrity is compromised by the pronounced dissolution of transition metal (TM) ions in the aqueous milieu. This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs. The dissolution mechanisms of TM ions in PBAs, informed by their structural attributes and redox processes, are thoroughly examined. Moreover, this study delves into innovative design tactics to alleviate the dissolution issue of TM ions. In conclusion, the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.

13.
Small ; : e2310997, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353064

RESUMO

Sodium-ion batteries (SIBs) are potential candidates for large energy storage usage because of the natural abundance and cheap sodium. Nevertheless, improving the energy density and cycling steadiness of SIB cathodes remains a challenge. In this work, F-doping Na3 Al2/3 V4/3 (PO4 )3 (NAVP) microspheres (Na3 Al2/3 V4/3 (PO4 )2.9 F0.3 (NAVPF)) are synthesized via spray drying and investigated as SIB cathodes. XRD and Rietveld refinement reveal expanded lattice parameters for NAVPF compared to the undoped sample, and the successful cation doping into the Na superionic conductor (NASICON) framework improves Na+ diffusion channels. The NAVPF delivers an ultrahigh capacity of 148 mAh g-1 at 100 mA g-1 with 90.8% retention after 200 cycles, enabled by the activation of V2+ /V5+ multielectron reaction. Notably, NAVPF delivers an ultrahigh rate performance, with a discharge capacity of 83.6 mAh g-1 at 5000 mA g-1 . In situ XRD demonstrates solid-solution reactions occurred during charge-discharge of NAVPF without two-phase reactions, indicating enhanced structural stability after F-doped. The full cell with NAVPF cathode and Na+ preintercalated hard carbon anode shows a large discharge capacity of 100 mAh g-1 at 100 mA g-1 with 80.2% retention after 100 cycles. This anion doping strategy creates a promising SIB cathode candidate for future high-energy-density energy storage applications.

14.
J Am Chem Soc ; 146(7): 4762-4770, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324552

RESUMO

Proton batteries are competitive due to their merits such as high safety, low cost, and fast kinetics. However, it is generally difficult for current studies of proton batteries to combine high capacity and high stability, while the research on proton storage mechanism and redox behavior is still in its infancy. Herein, the polyanionic layered copper oxalate is proposed as the anode for a high-capacity proton battery for the first time. The copper oxalate allows for reversible proton insertion/extraction through the layered space but also achieves high capacity through synchronous redox reactions of Cu2+ and C2O42-. During the discharge process, the bivalent Cu-ion is reduced, whereas the C═O of the oxalate group is partially converted to C-O. This synchronous behavior presents two units of charge transfer, enabling the embedding of two units of protons in the (110) crystal face. As a result, the copper oxalate anode demonstrates a high specific capacity of 226 mAh g-1 and maintains stable operation over 1000 cycles with a retention of 98%. This work offers new insights into the development of dual-redox electrode materials for high-capacity proton batteries.

15.
ACS Nano ; 18(6): 5068-5078, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289162

RESUMO

Solid-state batteries based on lithium metal anodes are expected to meet safety challenges while maintaining a high energy density. One major challenge lies in the fast interface degradation between the electrolyte and the lithium metal. Herein, we propose a quasi-3D interphase on a garnet solid-state electrolyte (SSE) by introducing lithiophilic nanotrenches. The nanotrenches created by the lithiophilic nanowire array can induce the superfilling of lithium metal into the nanotrenches, resulting in a low interfacial resistance (4 Ω cm2). Moreover, the embedded lithium metal anode optimizes the lithium deposition/stripping behavior not limited at the Li-SSE interface (∼1-10 nm) but extended into the bulk lithium anode (∼10 µm), realizing a high critical current density of 1.8-2.0 mA cm-2 at room temperature (RT). The embedded lithium metal anode is further applied in Li||LiFePO4 solid-state batteries, demonstrating a high reversible areal capacity of ∼3.0 mAh cm-2 at RT.

16.
Adv Mater ; 36(14): e2310645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226766

RESUMO

Aqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution. This genuine limitation poses a considerable challenge to their transition from the laboratory to the industry. In this study, leveraging density functional theory (DFT) calculations, an artificial interphase that achieves both hydrophobicity and restriction of the outward penetration of dissolved vanadium cations, thereby shifting the reaction equilibrium and suppressing the vanadium dissolution following Le Chatelier's principle, is described. The approach has resulted in one of the best cycling stabilities to date, with no noticeable capacity fading after more than 200 cycles (≈720 h) at 200 mA g-1 (0.47C). These findings represent a significant advance in the design of ultrastable cathodes for aqueous batteries and accelerate the industrialization of aqueous zinc-ion batteries.

17.
Nat Commun ; 15(1): 596, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238327

RESUMO

Molten salt aluminum-sulfur batteries are based exclusively on resourcefully sustainable materials, and are promising for large-scale energy storage owed to their high-rate capability and moderate energy density; but the operating temperature is still high, prohibiting their applications. Here we report a rapid-charging aluminium-sulfur battery operated at a sub-water-boiling temperature of 85 °C with a tamed quaternary molten salt electrolyte. The quaternary alkali chloroaluminate melt - possessing abundant electrochemically active high-order Al-Cl clusters and yet exhibiting a low melting point - facilitates fast Al3+ desolvation. A nitrogen-functionalized porous carbon further mediates the sulfur reaction, enabling the battery with rapid-charging capability and excellent cycling stability with 85.4% capacity retention over 1400 cycles at a charging rate of 1 C. Importantly, we demonstrate that the asymmetric sulfur reaction mechanism that involves formation of polysulfide intermediates, as revealed by operando X-ray absorption spectroscopy, accounts for the high reaction kinetics at such temperature wherein the thermal management can be greatly simplified by using water as the heating media.

18.
Small ; 20(10): e2305020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875658

RESUMO

Clean and sustainable energy conversion and storage through electrochemistry shows great promise as an alternative to traditional fuel or fossil-consumption energy systems. With regards to practical and high-efficient electrochemistry application, the rational design of active sites and the accurate description of mechanism remain a challenge. Toward this end, in this Perspective, a unique on-chip micro/nano device coupling nanofabrication and low-dimensional electrochemical materials is presented, in which material structure analysis, field-effect regulation, in situ monitoring, and simulation modeling are highlighted. The critical mechanisms that influence electrochemical response are discussed, and how on-chip micro/nano device distinguishes itself is emphasized. The key challenges and opportunities of on-chip electrochemical platforms are also provided through the Perspective.

19.
Adv Mater ; 36(3): e2308628, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910810

RESUMO

Aqueous batteries are emerging as highly promising contenders for large-scale grid energy storage because of uncomplicated assembly, exceptional safety, and cost-effectiveness. The unique aqueous electrolyte with a rich hydrogen bond (HB) environment inevitably has a significant impact on the electrode materials and electrochemical processes. While numerous reviews have focused on the materials design and assembly of aqueous batteries, the utilization of HB chemistry is overlooked. Herein, instead of merely compiling recent advancements, this review presents a comprehensive summary and analysis of the profound implication exerted by HB on all components of the aqueous batteries. Intricate links between the novel HB chemistry and various aqueous batteries are ingeniously constructed within the critical aspects, such as self-discharge, structural stability of electrode materials, pulverization, solvation structures, charge carrier diffusion, corrosion reactions, pH sensitivity, water splitting, polysulfides shuttle, and H2 S evolution. By adopting a vantage point that encompasses material design, binder and separator functionalization, electrolyte regulation, and HB optimization, a critical examination of the key factors that impede electrochemical performance in diverse aqueous batteries is conducted. Finally, insights are rendered properly based on HB chemistry, with the aim of propelling the advancement of state-of-the-art aqueous batteries.

20.
Energy Environ Sci ; 16(12): 5832-5841, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38076637

RESUMO

The Daniell cell (Cu vs. Zn), was invented almost two centuries ago, but has been set aside due to its non-rechargeable nature and limited energy density. However, these cells are exceptionally sustainable because they do not require rare earth elements, are aqueous and easy to recycle. This work addresses key challenges in making Daniell cells relevant to our current energy crisis. First, we propose new approaches to stabilise Zn and Cu plating and stripping processes and create a rechargeable cell. Second, we replace salt bridges with an anion exchange membrane, or a bipolar membrane for alkaline-acid hybrid Zn-Cu batteries operating at 1.56 V. Finally, we apply these changes in pouch cells in order to increase energy and power density. These combined developments result in a rechargeable Daniell cell, which can achieve high areal capacities of 5 mA h cm-2 and can easily be implemented in 1 A h pouch cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...