Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(17): 12049-12057, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628489

RESUMO

A novel sustained chlorine-releasing polydimethylsiloxane/Ca(ClO)2 (PDMS/Ca(ClO)2) material was fabricated by encapsulating Ca(ClO)2 in a PDMS matrix due to its high hydrophobicity and high chemical stability, which showed immediate-responsive and long-lasting antibacterial capabilities in aqueous conditions. Free chlorine could be released from the PDMS/Ca(ClO)2 after immersion in water for 2 min and could also be sustainedly released for 2 weeks, while the released concentration is negatively related to the duration time and positively with the initial Ca(ClO)2 contents. Additionally, Ca(ClO)2 powder as a filler significantly affects the crosslinking and pore size of PDMS. The PDMS/Ca(ClO)2 materials exhibited enduring antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in both planktonic and multispecies-biofilm status. It is expected that this PDMS/Ca(ClO)2 material and its similar composite would be promising candidates for wide sustainable disinfection applications in biomedical and industrial fields.

2.
Int J Nanomedicine ; 18: 1507-1520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998603

RESUMO

Purpose: A synergistic antibacterial system employing photocatalytic performance and low-temperature photothermal effect (LT-PTT) with the potential for infectious skin wound healing promotion was developed. Methods: Ag/Ag2O was synthesized with a two-step method, and its physicochemical properties were characterized. After its photocatalytic performance and photothermal effect were evaluated under 0.5 W/cm2 808 nm NIR laser irradiation, its antibacterial activities in both planktonic and biofilm forms were then studied in vitro targeting Staphylococcus Aureus (S. aureus), and the biocompatibility was tested with L-929 cell lines afterward. Finally, the animal model of dorsal skin wound infection was established on Sprague-Dawley rats and was used to assess infectious wound healing promotion of Ag/Ag2O in vivo. Results: Ag/Ag2O showed boosted photocatalytic performance and local temperature accumulation compared with Ag2O when exposed to 0.5 W/cm2 808 nm NIR irradiation, which therefore endowed Ag/Ag2O with the ability to kill pathogens rapidly and cleavage bacterial biofilm in vitro. Furthermore, after treatment with Ag/Ag2O and 0.5 W/cm2 808 nm NIR irradiation, infectious wounds of rats realized skin tissue regeneration from a histochemical level. Conclusion: By exhibiting excellent NIR-triggered photocatalytic sterilization ability enhanced by low-temperature photothermal effect, Ag/Ag2O was promising to be a novel, photo-responsive antibacterial agent.


Assuntos
Antibacterianos , Staphylococcus aureus , Ratos , Animais , Temperatura , Ratos Sprague-Dawley , Antibacterianos/farmacologia , Antibacterianos/química , Esterilização
3.
ACS Appl Mater Interfaces ; 15(1): 391-406, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562459

RESUMO

The effective treatment for periodontitis is to completely and sustainedly eradicate the bacterial pathogens from the complex periodontal pockets. Local sustained-release antibiotics as a complementary treatment after scaling and root planning can sustainedly combat bacterial pathogens in the periodontal pockets to help treat the disease, but the increasing concern of bacterial resistance limits its future use. Here, we reported a local antibacterial system based on microsized multifunctional Ag-TiO2-x encapsulated in alginate (ATA) microspheres. We confirmed that ATA displayed strong photothermally enhanced dual enzyme-mimicking (peroxidase-like and catalase-like) activities and weak photocatalytic activity under 808 nm near-infrared (NIR) irradiation, which could boost the generation of reactive oxygen species (ROS) and O2 in the presence of low-level H2O2. As a result, the ATA/H2O2/NIR system exhibited efficient antibacterial activity against Porphyromonas gingivalis and Streptococcus gordonii in both planktonic and biofilm forms. With the help of ROS, ATA could release Ag+ in concentrations sufficient to inhibit periodontal pathogens as well. Moreover, the in situ-generated oxygen was supposed to alleviate the local hypoxic environment and would help downregulate the lipopolysaccharide-mediated inflammatory response of periodontal stem cells. The in vivo rat periodontitis treatment results demonstrated that the ATA/H2O2/NIR system reduced the bacterial load, relieved inflammation, and improved tissue healing. Our work developed a new local prolonged bactericidal and oxygenation system for enhanced periodontitis. Avoiding the usage of antibiotics and nanomaterials, this strategy showed great promise in adjunctive periodontitis treatment and also in other biomedical applications.


Assuntos
Alginatos , Periodontite , Ratos , Animais , Alginatos/farmacologia , Bolsa Periodontal/tratamento farmacológico , Espécies Reativas de Oxigênio/farmacologia , Peróxido de Hidrogênio/farmacologia , Microesferas , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Porphyromonas gingivalis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...