Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 26(11): 313, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090341

RESUMO

Purification of the density matrix methods should be employed when dealing with complex chemical systems containing many atoms. The running times for these methods scale linearly with the number of atoms if we consider the sparsity from the density matrix. Since the efficiency expected from those methods is closely tied to the underlying parallel implementations of the linear algebra operations (e.g., P2 = P × P), we proposed a central processing unit (CPU) and graphics processing unit (GPU) parallel matrix-matrix multiplication in SVBR (symmetrical variable block row) format for energy calculations through the SP2 algorithm. This algorithm was inserted in MOPAC's MOZYME method, using the original LMO Fock matrix assembly, and the atomic integral calculation implemented on it. Correctness and performance tests show that the implemented SP2 is accurate and fast, as the GPU is able to achieve speedups up to 40 times for a water cluster system with 42,312 orbitals running in one NVIDIA K40 GPU card compared to the single-threaded version. The GPU-accelerated SP2 algorithm using the MOZYME LMO framework enables the calculations of semiempirical wavefunction with stricter SCF criteria for localized charged molecular systems, as well as the single-point energies of molecules with more than 100.000 LMO orbitals in less than 1 h. Graphical abstract Parallel CPU and GPU purification algorithms for electronic structure calculations were implemented in MOPAC's MOZYME method. Some matrices in these calculations, e.g., electron density P, are compressed, and the developed linear algebra operations deal with non-zero entries only. We employed the NVIDIA/CUDA platform to develop GPU algorithms, and accelerations up to 40 times for larger systems were achieved.

2.
J Chem Theory Comput ; 8(9): 3072-81, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26605718

RESUMO

In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...