Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-511804

RESUMO

SARS-CoV-2 is the aetiologic agent of COVID-19 and the associated ongoing pandemic. As the pandemic has progressed, Variants of Concern (VOC) have emerged with lineage defining mutations. Using a SARS-CoV-2 reverse genetic system, based on transformation associated recombination in yeast, a series of replicons were produced for the ancestral Wuhan virus and the SARS-CoV-2 VOC Delta in which different combinations of the Spike, membrane, ORF6 and ORF7a coding sequences were replaced with sequences encoding the selectable marker puromycin N-acetyl transferase and reporter proteins (Renilla luciferase, mNeonGreen and mScarlet). Replicon RNAs were replication competent in African green monkey kidney (Vero E6) derived cells and a range of human cell lines, with a Vero E6 cell line expressing ACE2 and TMPRSS2 showing much higher transfection efficiency and overall levels of Renilla luciferase activity. The replicons could be used for transient gene expression studies, but cell populations that stably maintained the replicons could not be propagated. Replication of the transiently expressed replicon RNA genomes was sensitive to remedesivir, providing a system to dissect the mechanism of action of antiviral compounds.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274395

RESUMO

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilised pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID- 19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in- house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterised samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489083

RESUMO

As COVID-19 persists, severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor-binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA-binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic {beta}-coronaviruses ({beta}-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2 and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation while the open, infectious conformation is LA-free. Electron tomography of SARS-CoV-2 infected cells reveals that LA-treatment inhibits viral replication, resulting in fewer, deformed virions. Our results establish FFA-binding as a hallmark of pathogenic {beta}-CoV infection and replication, highlighting potential antiviral strategies. One-Sentence SummaryFree fatty acid-binding is conserved in pathogenic {beta}-coronavirus S proteins and suppresses viral infection and replication.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474030

RESUMO

The mutational landscape of SARS-CoV-2 varies at both the dominant viral genome sequence and minor genomic variant population. An early change associated with transmissibility was the D614G substitution in the spike protein. This appeared to be accompanied by a P323L substitution in the viral polymerase (NSP12), but this latter change was not under strong selective pressure. Investigation of P323L/D614G changes in the human population showed rapid emergence during the containment phase and early surge phase of wave 1 in the UK. This rapid substitution was from minor genomic variants to become part of the dominant viral genome sequence. A rapid emergence of 323L but not 614G was observed in a non-human primate model of COVID-19 using a starting virus with P323 and D614 in the dominant genome sequence and 323L and 614G in the minor variant population. In cell culture, a recombinant virus with 323L in NSP12 had a larger plaque size than the same recombinant virus with P323. These data suggest that it may be possible to predict the emergence of a new variant based on tracking the distribution and frequency of minor variant genomes at a population level, rather than just focusing on providing information on the dominant viral genome sequence e.g., consensus level reporting. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-469860

RESUMO

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested sub genomic RNAs used to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257591

RESUMO

There is widespread interest in the capacity for SARS-CoV-2 evolution in the face of selective pressures from host immunity, either naturally acquired post-exposure or from vaccine acquired immunity. Allied to this is the potential for long perm persistent infections within immune compromised individuals to allow a broader range of viral evolution in the face of sub-optimal immune driven selective pressure. Here we report on an immunocompromised individual who is hypogammaglobulinaemic and was persistently infected with SARS-CoV-2 for over 290 days, the longest persistent infection recorded in the literature to date. During this time, nine samples of viral nucleic acid were obtained and analysed by next-generation sequencing. Initially only a single mutation (L179I) was detected in the spike protein relative to the prototypic SARS-CoV-2 Wuhan-Hu-1 isolate, with no further changes identified at day 58. However, by day 155 the spike protein had acquired a further four amino acid changes, namely S255F, S477N, H655Y and D1620A and a two amino acid deletion ({Delta}H69/{Delta}V70). Infectious virus was cultured from a nasopharyngeal sample taken on day 155 and next-generation sequencing confirmed that the mutations in the virus mirrored those identified by sequencing of the corresponding swab sample. The isolated virus was susceptible to remdesivir in vitro, however a 17-day course of remdesivir started on day 213 had no effect on the viral RT-PCR cycle threshold (Ct) value. On day 265 the patient was treated with the combination of casirivimab and imdevimab. The patient experienced progressive resolution of all symptoms over the next 8 weeks and by day 311 the virus was no longer detectable by RT-PCR. The {Delta}H69/{Delta}V70 deletion in the N-terminus of the spike protein which arose in our patient is also present in the B.1.1.7 variant of concern and has been associated with viral escape mutagenesis after treatment of another immunocompromised patient with convalescent plasma. Our data confirms the significance of this deletion in immunocompromised patients but illustrates it can arise independently of passive antibody transfer, suggesting the deletion may be an enabling mutation that compensates for distant changes in the spike protein that arise under selective pressure.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443384

RESUMO

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants which is of particular concern due to their potential for increased transmissibility and pathology. In addition to this entrenched variant diversity in circulation, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriS{Delta} variant, originally identified as a viral subpopulation by passaging SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike glycoprotein an eight amino-acid deletion encompassing the furin recognition motif and S1/S2 cleavage site. Here, we elucidate the structure, function and molecular dynamics of this variant spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Moreover, our study reveals long-range allosteric communication between functional regions within the spike that differ in wild-type and deletion variant. Our results support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-423721

RESUMO

Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known whether heart vascular pericytes (PCs) are infected by SARS-CoV-2, and if the S protein alone provokes PC dysfunction. Here, we aimed to investigate the effects of the S protein on primary human cardiac PC signalling and function. Results show, for the first time, that cardiac PCs are not permissive to SARS-CoV-2 infection in vitro, whilst a recombinant S protein alone elicits functional alterations in PCs. This was documented as: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors responsible for EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation and rescued PC function in the presence of the S protein. In conclusion, our findings suggest that circulating S protein prompts vascular PC dysfunction, potentially contributing to establishing microvascular injury in organs distant from the site of infection. This mechanism may have clinical and therapeutic implications. Clinical perspectiveO_LISevere COVID-19 manifests as a microvascular syndrome, but whether SARS-CoV-2 infects and damages heart vascular pericytes (PCs) remains unknown. C_LIO_LIWe provide evidence that cardiac PCs are not infected by SARS-CoV-2. Importantly, we show that the recombinant S protein alone elicits cellular signalling through the CD147 receptor in cardiac PCs, thereby inducing cell dysfunction and microvascular disruption in vitro. C_LIO_LIThis study suggests that soluble S protein can potentially propagate damage to organs distant from sites of infection, promoting microvascular injury. Blocking the CD147 receptor in patients may help protect the vasculature not only from infection, but also from the collateral damage caused by the S protein. C_LI

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-334532

RESUMO

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern. To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only. Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis. Taken together, the data suggest that the concept of twinfection is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-318311

RESUMO

SARS-CoV-2 enters cells via its spike glycoprotein which must be cleaved sequentially at the S1/S2, then the S2 cleavage sites (CS) to mediate membrane fusion. SARS-CoV-2 has a unique polybasic insertion at the S1/S2 CS, which we demonstrate can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture adapted SARS-CoV-2 virus with a S1/S2 deletion, we show that the polybasic insertion is selected for in lung cells and primary human airway epithelial cultures but selected against in Vero E6, a cell line used for passaging SARS-CoV-2. We find this selective advantage depends on expression of the cell surface protease, TMPRSS2, that allows virus entry independent of endosomes thus avoiding antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin CS was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals. Thus, the polybasic CS is a key determinant for efficient SARS-CoV-2 transmission.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-251207

RESUMO

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3/{beta} and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-134114

RESUMO

SARS-CoV-2 is the causative agent of COVID-19, a coronavirus disease that has infected more than 6.6 million people and caused over 390,000 deaths worldwide1,2. The Spike (S) protein of the virus forms projections on the virion surface responsible for host cell attachment and penetration. This viral glycoprotein is synthesized as a precursor in infected cells and, to be active, must be cleaved to two associated polypeptides: S1 and S2(3,4). For SARS-CoV-2 the cleavage is catalysed by furin, a host cell protease, which cleaves the S protein precursor at a specific sequence motif that generates a polybasic Arg-Arg-Ala-Arg (RRAR) C-terminal sequence on S1. This sequence motif conforms to the C-end rule (CendR), which means that the C-terminal sequence may allow the protein to associate with cell surface neuropilin-1 (NRP1) and neuropilin-2 (NRP2) receptors5. Here we demonstrate using immunoprecipitation, site-specific mutagenesis, structural modelling, and antibody blockade that, in addition to engaging the known receptor ACE2, S1 can bind to NRP1 through the canonical CendR mechanism. This interaction enhances infection by SARS-CoV-2 in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection, and provides a therapeutic target for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...