Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10904, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616812

RESUMO

Current projections of the climate-sensitive portion of residential electricity demand are based on estimating the temperature response of the mean of the demand distribution. In this work, we show that there is significant asymmetry in the summer-time temperature response of electricity demand in the state of California, with high-intensity demand demonstrating a greater sensitivity to temperature increases. The greater climate sensitivity of high-intensity demand is found not only in the observed data, but also in the projections in the near future (2021-2040) and far future periods (2081-2099), and across all (three) utility service regions in California. We illustrate that disregarding the asymmetrical climate sensitivity of demand can lead to underestimating high-intensity demand in a given period by 37-43%. Moreover, the discrepancy in the projected increase in the climate-sensitive portion of demand based on the 50th versus 90[Formula: see text] quantile estimates could range from 18 to 40% over the next 20 years.

2.
Nat Commun ; 11(1): 1686, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245945

RESUMO

Cooling demand is projected to increase under climate change. However, most of the existing projections are based on rising air temperatures alone, ignoring that rising temperatures are associated with increased humidity; a lethal combination that could significantly increase morbidity and mortality rates during extreme heat events. We bridge this gap by identifying the key measures of heat stress, considering both air temperature and near-surface humidity, in characterizing the climate sensitivity of electricity demand at a national scale. Here we show that in many of the high energy consuming states, such as California and Texas, projections based on air temperature alone underestimates cooling demand by as much as 10-15% under both present and future climate scenarios. Our results establish that air temperature is a necessary but not sufficient variable for adequately characterizing the climate sensitivity of cooling load, and that near-surface humidity plays an equally important role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...