Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(12): 1450, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947904

RESUMO

The Shirakami Mountain range, including the largest primeval beech forest in East-Asia, is undergoing ecological change. Dissolved organic matter (DOM) plays an important role in nutrient and material cycling in forest ecosystems. Because the quality of DOM varies based on its origin and diagenetic and runoff processes, changes in the environment surrounding DOM can be rapidly detected by monitoring its quality. Herein, concentrations and fluorescence composition of DOM at 14 sites in 13 streams in the Shirakami Mountain range were monitored monthly for over 2 years, excluding winter (December-March), to gain insight into the catchment hydrological and soil characteristics affecting DOM concentrations and composition in stream water. Based on the pattern of temporal changes in fluorescent component composition, monitoring sites were categorized into four groups (streams with small catchments, large catchments, catchments facing the Sea of Japan, and open waters in the catchment) with similar catchment characteristics affecting DOM dynamics. Multiple linear regression analysis showed that DOM concentrations in each group could be attributed to rainfall on the survey date, short-term (1-2 days) rainfall, midterm (~1 month) accumulated rainfall, midterm (7-11 days) accumulated temperature, and catchment characteristics as explanatory variables. The degree of influence of these variables differed among the four groups. The results of this study show that grouping streams according to catchment hydrological characteristics can help identify the impact of climate and environmental change on DOM dynamics in stream water.


Assuntos
Matéria Orgânica Dissolvida , Ecossistema , Rios/química , Japão , Monitoramento Ambiental , Água
2.
Sci Total Environ ; 855: 158809, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116643

RESUMO

Leachate from decaying root and leaf litter plays crucial roles in soil biogeochemical processes in forest ecosystems. Unlike for leaf litter, however, the chemical composition and microbial community of root litter leachate are poorly understood. We hypothesized that both leachate nitrogen (N) composition and microbial communities differ between plant organs and decomposition stages and that leachate composition affects microbial community composition. We conducted a 2.5-year laboratory incubation using root and leaf substrate from Cryptomeria japonica and Chamaecyparis obtusa. We monitored the N forms released and used metabarcoding to characterize the microbial communities. Leachate N accounted for 40 % and 30 % of net N losses from C. japonica and C. obtusa roots, respectively; the remainder was probably lost in gaseous forms. In contrast, leaves absorbed N during the incubation regardless of tree species. The predominant N form in root leachate was nitrate (NO3-); cumulative NO3- quantity was 22.6 and 25.5 times greater in root than in leaf leachate for C. japonica and C. obtusa, respectively. A nitrifying bacterium was selected as the indicator taxon in root substrates, whereas many families of N-fixing bacteria were selected in leaf substrates. At the end of the incubation period, bacterial taxonomic diversity was high in both organs from both tree species, ranging from 177 to 339 taxa and increasing with time. However, fungal diversity was low for both organs (72 to 155 taxa). Shifts in bacterial community structure were related to NO3- concentration and leachate pH, whereas shifts in fungal community structure were related to leachate pH. These results suggest that the contrasting N dynamics of root and leaf substrates are strongly affected by the characteristics of and the microbes recruited by their leachates. Understanding organ-specific litter N dynamics is indispensable for predicting N cycling for optimal management of forest ecosystems in a changing world.


Assuntos
Microbiota , Nitrogênio , Nitrogênio/análise , Ecossistema , Árvores , Folhas de Planta/química , Florestas , Solo/química , Microbiologia do Solo , Bactérias
3.
J Environ Manage ; 302(Pt B): 114068, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773779

RESUMO

Hydrogen sulfide (H2S) is a toxic gas, and considerable research has been conducted for its control and removal from industrial wastewater and sewage water. However, no simple and practical technology is available for degrading H2S in situ at tunnel constructing sites. On May 11, 2020, an H2S blowout accident occurred in underground soil at a residential sewer-tunnel construction site in Iwakuni City, Yamaguchi Prefecture, Japan, filling the tunnel with high concentrations of H2S gas, causing the fatality of one worker owing to emphysema. River water flowing near the site was immediately introduced into the tunnel to trap the H2S gas, generating 652-m3 water that contained high concentrations (120 mg/L) of dissolved H2S in the tunnel. To safely and quickly remove H2S in situ, the contaminated water was treated with high-density oxygen and ozone nanobubbles (O2/O3-HDNBs) generated using the ultrafine pore method. Consequently, H2S was removed from the contaminated water in 3 days. This is the first successful application of O2/O3-HDNB technology for the in situ oxidation of H2S in environmental water at a construction site. This study reports the practical application of this advanced technology and the system performance.


Assuntos
Sulfeto de Hidrogênio , Ozônio , Oxirredução , Oxigênio , Esgotos
4.
Environ Monit Assess ; 193(7): 379, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081184

RESUMO

2-Methylisoborneol (2-MIB) is the primary cause of the earthy and musty odor produced by cyanobacteria, which deteriorates the quality of fishery products and tap water. Despite the need for controlling outbreaks, few studies have been conducted on 2-MIB in brackish lakes, where capture fisheries are active. This study examined the association between water quality and the outbreak of 2-MIB in a brackish lake using statistical analysis of long-term monitoring data and developed forecasting models for 2-MIB outbreaks. We investigated Lake Ogawara, which is a brackish lake with a cool-temperate climate in Japan, where 2-MIB outbreaks frequently occur between August and December. Logistic regression analyses were performed using the outbreak or non-outbreak of 2-MIB (2-MIB(+ / -)) as the dependent variable and water quality parameters as the independent variables. The results suggested that the density of 2-MIB-producing cyanobacteria was higher when (1) dissolved inorganic nitrogen concentrations were low under the relaxation of phosphorus limitation and/or (2) salinity or micronutrient concentrations were high. In addition, we successfully developed forecasting models with a high predictive power that determined 2-MIB(+ / -) in August-December using only two water quality parameters: dissolved inorganic phosphate and pH in April and total nitrogen/total phosphorous and salinity in May.


Assuntos
Monitoramento Ambiental , Lagos , Canfanos , Surtos de Doenças , Japão , Odorantes
5.
Sci Rep ; 11(1): 6416, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742002

RESUMO

Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.


Assuntos
Beijerinckiaceae/metabolismo , Betaproteobacteria/metabolismo , Burkholderiaceae/metabolismo , Ciclo do Carbono/fisiologia , Carbono/metabolismo , Florestas , Microbiota/genética , Microbiologia do Solo , Solo/química , Áreas Alagadas , Acidobacteria/metabolismo , Beijerinckiaceae/genética , Betaproteobacteria/genética , Burkholderiaceae/genética , Dióxido de Carbono/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Malásia , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Árvores/metabolismo
6.
Sci Total Environ ; 754: 142411, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254910

RESUMO

Alpine rivers in mountainous regions are crucial not only for land-ocean transfer of chemical species and sediments, but also for water, food, and energy security. Here, we examined dissolved organic matter (DOM) from the major alpine waters on the Tibetan Plateau. Our results revealed a decreasing trend of DOM quantity juxtaposed to an increasing trend of aromaticity from the northern to southern plateau. This is potentially caused by a general decreasing gradient of dust load combined with an increasing gradient of precipitation and vegetation from the NW to SE plateau. Furthermore, most proglacial streams and smaller tributaries were found to be relatively dominated by tyrosine-like fluorescent DOM from glaciers. In contrast, most main stems of rivers and tributaries within larger catchment basins were more controlled by humic-like fluorescent DOM from terrestrial origins. Condensed aromatics accounts for 14-21% of molecular formulas for riverine DOM, much higher than the world's average of ~11%, which indicated anthropogenic black soot pollution. In addition, there is a higher level of DOM amount in the monsoon season than in winter, and DOM characteristics varied more widely (dissolved organic carbon concentration: 0.2-37 mg-C L-1, Fluorescence Index: 1.2-1.8) on the Tibetan Plateau in comparison to other global alpine watersheds. This suggests heterogeneous land cover, anthropogenic, and climatic factors at play, which is reflected in DOM quantity and quality, over the highest plateau on Earth.

7.
J Environ Qual ; 49(1): 119-127, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016350

RESUMO

Eutrophication is an issue of concern in many brackish lakes with an agricultural watershed. The amount of snowfall in snowy areas is anticipated to decline because of global climate change. The aim of this study was to assess the impact of changes in the inflow of snowmelt on the nutrient concentrations of a downstream brackish lake. In Lake Ogawara, a brackish lake in a snow-covered agricultural area of Japan, we examined the relationships between inflowing river discharge (D/C) during spring and total nitrogen (TN) and total phosphorus (TP) concentrations in the mixolimnion of the lake ([TNmix ] and [TPmix ], respectively) using 29 yr of monitoring data. In addition, we assessed the causal relationship between the D/C and the lake nutrient concentrations. There was large year-to-year variation in D/C during April (D/CApr ), which accounted for 7-31% of the mixolimnion volume. Significant positive correlations were observed between D/CApr and [TNmix ] from the ensuing April to September. On an annual basis, 49% of the interannual variation of the mean [TNmix ] during the ensuing April to September was explained by the interannual variation of D/CApr . Therefore, D/CApr could be useful as a simple index to [TNmix ] in the ensuing spring to summer. It is notable that the relationships between D/CApr and [TNmix ] from April to September was indicated to be acausal by statistical causal inference. Common climate conditions that increase D/CApr (i.e., a cold winter with a high level of precipitation) were found to drive other biogeochemical processes that increased [TNmix ] during the ensuing spring to summer.


Assuntos
Lagos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise
8.
Water Res ; 163: 114901, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362208

RESUMO

This study characterized dissolved organic matter (DOM) obtained from 47 lakes and 2 streams on ice-free areas at Lützow-Holm Bay and Amundsen Bay in East Antarctica (n = 74), where few biogeochemical studies have been historically conducted. Samples were analyzed for basic water chemistry and by resin fractionation, UV-vis spectroscopy, and excitation emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC). Salinity of the samples ranged very broadly from fresh to hypersaline as a result of evaporative concentration. There was a clear positive correlation between log-salinity and the spectral slopes of DOM (S275-295), an indicator of photodegradation. Thus, we interpreted the correlation as a progression of photodegradation by prolonged water retention time. Of the identified seven PARAFAC components, three ubiquitous humic-like components decreased as photodegradation progressed, while a photorefractory UVC humic-like component increased its relative abundance. A non-humic component, traditionally defined as Peak N, did not show a trend depending on photodegradation, and its level was high in nutrient-rich lakes, presumably due to high in-situ production. We found robust correlations between the relative abundance of the ubiquitous humic-like components and that of the Peak N component in the bulk DOM irrespective of water types or ice-free areas. We proposed there were common processes that generated the ubiquitous humic-like components from the Peak N component in the Lützow-Holm Bay and Amundsen Bay lakes and streams, such as bacterial processing of primary production-derived DOM and photochemical transformation of microbial DOM.


Assuntos
Lagos , Rios , Regiões Antárticas , Análise Fatorial , Substâncias Húmicas , Espectrometria de Fluorescência
9.
Sci Total Environ ; 645: 179-191, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30021175

RESUMO

Some tree species increase fine root production under soil acidification, thus changing the balance of litter input from leaves and roots. Litter leaches a significant amount of acidic materials during its decomposition, which might facilitate soil acidification. In this context, we focused on dissolved organic matter (DOM) as the major component of acidic materials. We hypothesized that both the quality and quantity of DOM, which control its function (i.e., proton supply), differ between leaf and root litter. To test this hypothesis, we conducted a 2.5-year laboratory incubation experiment using fresh fine roots and fresh green leaves as litter of two coniferous species (Cryptomeria japonica and Chamaecyparis obtusa) and investigated the leachate pH and DOM composition based on the optical properties. After the early stage of decomposition when flash leaching of DOM converged, the amount of dissolved organic carbon (DOC) leached from roots increased again and leachate pH declined. In contrast, DOC concentrations continued to decrease in leaf leachates during the incubation period, and the pH decrease was not as striking as that of root leachates. Optical properties (ultraviolet visible absorption and fluorescence) of DOM revealed that humic-like substances in DOM played a central role in the acidic pH of root leachates. The total amount of protons released from roots of C. japonica and C. obtusa is about 13 and 18 times higher, respectively, than that from leaves. These results imply that the increase of fine root biomass may induce a positive plant-soil feedback in acidic soils, affecting soil biogeochemical functions of terrestrial ecosystems.


Assuntos
Folhas de Planta , Poluentes da Água/química , Carbono , Ecossistema , Concentração de Íons de Hidrogênio , Solo , Árvores
10.
Sci Total Environ ; 587-588: 381-388, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242223

RESUMO

To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on 13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2 fluxes from the three soils ranged from 78 to 625mgCm-2h-1 with a negative correlation to groundwater level. The CH4 fluxes ranged from -67 to 653µgCm-2h-1. Both total CO2 and CH4 fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1 for the MPS soil and 0.066y-1 for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.

11.
Sci Total Environ ; 493: 220-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24946034

RESUMO

As basic information for assessing reactivity and functionality of wetland-associated dissolved organic matter (DOM) based on their composition and structural properties, chemical characteristics of N in ultrafiltered DOM (UDON; >1 kD) isolated from wetland-associated rivers in three climates (cool-temperate, Hokkaido, Japan; sub-tropical, Florida, USA; tropical, Sarawak, Malaysia) were investigated. The UDON was isolated during dry and wet seasons, or during spring, summer, and autumn. The proportion of UDON present as humic substances, which was estimated as the DAX-8 adsorbed fraction, ranged from 47 to 91%, with larger values in the Sarawak than at the other sites. The yield of hydrolyzable amino acid N ranged 1.24 to 7.01 mg g(-1), which correlated positively to the total N content of UDOM and tended to be larger in the order of Florida>Hokkaido>Sarawak samples. X-ray photoelectron N1s spectra of UDON showed a strong negative correlation between the relative abundances of amide/peptide N and primary amine N. The relative abundances of amide/peptide N and primary amine N in the Sarawak samples were smaller (70-76%) and larger (20-23%) respectively compared to those (80-88% and 4-9%) in the Florida and Hokkaido samples. Assuming terminal amino groups and amide N of peptides as major constituents of primary amine N and amide/peptide N, respectively, the average molecular weight of peptides was smaller in the Sarawak samples than that in the Florida and Hokkaido samples. Seasonal variations in UDON composition were scarce in the Sarawak and Florida samples, whereas the distribution of humic substance-N and nonhumic substance-N and compositions of amino acids and N functional groups showed a clear seasonality in the Hokkaido samples. While aromatic N increased from spring to autumn, contributions from fresh proteinaceous materials were also enhanced during autumn, resulting in the highest N content of UDOM for this season.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Japão , Rios/química
12.
J Environ Qual ; 41(3): 823-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22565264

RESUMO

Chromophoric dissolved organic matter (CDOM) leached from leaf litter is a major source of humus in mineral soil of forest ecosystems. While their functions and refractoriness depend on the physicochemical structure, there is little information on the quality of CDOM, especially for that leached in the very early stages of litter decomposition when a large amount of dissolved organic matter (DOM) is leached. This study aimed to better understand the variations/changes in the composition of CDOM leached from senescent leaf litter from two tree species during the early stage of decomposition. Leaf litter from a conifer tree (Japanese cedar, D. Don) and a deciduous broad-leaved tree (Konara oak, Thunb.) were incubated in columns using simulated rainfall events periodically for a total of 300 d at 20°C. The quality of CDOM was investigated based on the fluorescence properties by using a combination of excitation-emission matrix fluorescence (EEM) and parallel factor analysis (PARAFAC). In addition, the phenolic composition of DOM was investigated at a molecular level by thermally assisted hydrolysis and methylation-gas chromatography-mass spectrometry (THM-GC-MS) in the presence of tetramethylammonium hydroxide (TMAH). The EEM was statistically decomposed into eight fluorescence components (two tannin/peptide-like peaks, one protein-like peak, and five humic-like peaks). A significant contribution of tannin/peptide-like peaks was observed at the beginning of incubation, but these peaks decreased quickly and humic-like peaks increased within 1 mo of incubation. The composition of humic-like peaks was different between tree species and changed over the incubation period. Since tannin-derived phenolic compounds were detected in the DOM collected after 254 d of incubation on THM-GC-MS, it was suggested that tannins partially changed its structure, forming various humic-like peaks during the early decomposition.


Assuntos
Biodegradação Ambiental , Cryptomeria/química , Folhas de Planta/química , Água/química , Fenóis/química , Quercus/química , Fatores de Tempo
13.
Chemosphere ; 88(10): 1265-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22564456

RESUMO

Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity.


Assuntos
Carbono/química , Clima , Substâncias Húmicas , Áreas Alagadas , Solubilidade
14.
J Environ Qual ; 40(4): 1266-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21712596

RESUMO

This study investigated seasonal and geographical variation in the fluorescence properties of dissolved organic matter (DOM) in a river system that includes rice paddy fields in its watershed. The river system covers a northern area of the main island of Japan, and between 6 and 45% the watershed area of the tributaries is paddy fields. Water samples were collected monthly from eight tributaries for 1 yr, and the fluorescence properties of DOM were monitored by combined excitation-emission matrix (EEM) and parallel factor analysis. The EEM was statistically decomposed into six fluorescence components with different environmental dynamics. The relative proportion of these components varied with season and geographic location, the former having a greater effect than the latter. Seasonal variation is largely attributed to changes in the source of DOM associated with irrigated rice cultivation practice. The fluorescence component composition showed a stronger autochthonous signature, which varied over a wider range during off-cropping period (October-April) than cropping period (May-September). During the cropping period, a large amount of allochthonous DOM with relatively similar quality was transported into river water from flooded paddy fields and masked the variability in the quality of DOM among tributaries. Therefore, irrigated rice cropping practices are considered to be one of major factors that influence seasonal and geographical variation of fluvial DOM composition.


Assuntos
Poluição Química da Água/análise , Agricultura , Análise Fatorial , Substâncias Húmicas/análise , Japão , Oryza/crescimento & desenvolvimento , Estações do Ano , Espectrometria de Fluorescência , Abastecimento de Água
15.
Water Res ; 41(3): 563-70, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17187842

RESUMO

This study demonstrates the compositional heterogeneity of a protein-like fluorescence emission signal (T-peak; excitation/emission maximum at 280/325 nm) of dissolved organic matter (DOM) samples collected from subtropical river and estuarine environments. Natural water samples were collected from the Florida Coastal Everglades ecosystem. The samples were ultrafiltered and excitation-emission fluorescence matrices were obtained. The T-peak intensity correlated positively with N concentration of the ultrafiltered DOM solution (UDON), although, the low correlation coefficient (r(2)=0.140, p<0.05) suggested the coexistence of proteins with other classes of compounds in the T-peak. As such, the T-peak was unbundled on size exclusion chromatography. The elution curves showed that the T-peak was composed of two compounds with distinct molecular weights (MW) with nominal MWs of about >5 x 10(4) (T(1)) and approximately 7.6 x 10(3) (T(2)) and with varying relative abundance among samples. The T(1)-peak intensity correlated strongly with [UDON] (r(2)=0.516, p<0.001), while T(2)-peak did not, which suggested that the T-peak is composed of a mixture of compounds with different chemical structures and ecological roles, namely proteinaceous materials and presumably phenolic moieties in humic-like substances. Natural source of the latter may include polyphenols leached from senescent plant materials, which are important precursors of humic substances. This idea is supported by the fact that polyphenols, such as gallic acid, an important constituent of hydrolysable tannins, and condensed tannins extracted from red mangrove (Rhizophora mangle) leaves exhibited the fluorescence peak in the close vicinity of the T-peak (260/346 and 275/313 nm, respectively). Based on this study the application of the T-peak as a proxy for [DON] in natural waters may have limitations in coastal zones with significant terrestrial DOM input.


Assuntos
Ecossistema , Corantes Fluorescentes/química , Compostos Orgânicos/química , Áreas Alagadas , Cromatografia em Gel , Monitoramento Ambiental/métodos , Flavonoides/análise , Flavonoides/química , Fluorescência , Corantes Fluorescentes/análise , Compostos Orgânicos/análise , Fenóis/análise , Fenóis/química , Polifenóis , Proteínas/química
16.
Phytochemistry ; 62(7): 1159-70, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12591272

RESUMO

MALDI-TOF mass spectrometry and 13C NMR spectroscopy were applied to unveil typical characteristics of condensed tannins of leaves and needles from willow (Salix alba), spruce (Picea abies) and beech (Fagus sylvatica) of three tree species that are ubiquitous in German forests and landscapes. For further evaluation, lime (Tilia cordata) was included. The 13C NMR spectroscopy confirmed the purity of the condensed tannin fractions and the efficiency of the procedure used for their extraction. While signals representative for procyanidin units are observable in all liquid-state 13C NMR spectra, resonance lines of prodelphinidin were only detected in those obtained from the condensed tannins of spruce needles and beech leaves. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the presence of stereoisomers (catechin/epicatechin; gallocatechin/ epigallocatechin). The MALDI-TOF mass spectra of the condensed tannins show signals of polymers of up to undecamers. Supporting the observations from the NMR spectroscopy, the mass spectra of the willow and lime leaf condensed tannins were identified as polymers with mainly procyanidin units, while the polymers of the spruce needle and beech leaves exhibit varying procyanidin/prodelphinidin ratios. Post source decay (PSD) fragmentation lead to a sequential loss of monomers and allowed a detailed characterization and sequencing of individual chains. In the case of the condensed tannins of lime this technique clearly excludes a pelargonidin terminal unit followed by a prodelphinidin unit, which would result in the same molecular masses as a polymer solely built up of procyanidin units.


Assuntos
Biflavonoides , Folhas de Planta/química , Proantocianidinas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Taninos/análise , Árvores , Catequina/análise , Catequina/química , Espectroscopia de Ressonância Magnética , Taninos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...