Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791297

RESUMO

Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Extratos Vegetais , Receptores de Estrogênio , Canais de Cátion TRPV , Humanos , Apoptose/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Proliferação de Células/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Eur J Pharmacol ; 955: 175901, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451423

RESUMO

Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.

3.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204312

RESUMO

Oxidative stress, resulting from an imbalance between the formation of damaging free radicals and availability of protective antioxidants, can contribute to peripheral neuropathic pain conditions. Reactive oxygen and nitrogen species, as well as products of the mitochondrial metabolism such as superoxide anions, hydrogen peroxide, and hydroxyl radicals, are common free radicals. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor encoded by the NFE2L2 gene and is a member of the cap 'n' collar subfamily of basic region leucine zipper transcription factors. Under normal physiological conditions, Nrf2 remains bound to Kelch-like ECH-associated protein 1 in the cytoplasm that ultimately leads to proteasomal degradation. During peripheral neuropathy, Nrf2 can translocate to the nucleus, where it heterodimerizes with muscle aponeurosis fibromatosis proteins and binds to antioxidant response elements (AREs). It is becoming increasingly clear that the Nrf2 interaction with ARE leads to the transcription of several antioxidative enzymes that can ameliorate neuropathy and neuropathic pain in rodent models. Current evidence indicates that the antinociceptive effects of Nrf2 occur via reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. Here, we will summarize the preclinical evidence supporting the role of Nrf2 signaling pathways and Nrf2 inducers in alleviating peripheral neuropathic pain.

4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925121

RESUMO

Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10-15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.


Assuntos
Analgésicos/farmacologia , Curcumina/farmacologia , Neuralgia/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Analgésicos/química , Analgésicos/farmacocinética , Animais , Curcuma/química , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Composição de Medicamentos , Humanos , Neuralgia/fisiopatologia , Dor Pós-Operatória/fisiopatologia , Fitoterapia
5.
Nutrients ; 12(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881661

RESUMO

Estrogen receptor antagonists are effective in breast cancer treatment. However, the side effects of these treatments have led to a rise in searching for alternative therapies. The present study evaluated the estrogenic, antiestrogenic, and antiproliferative activities of Euphorbia bicolor (Euphorbiaceae), a plant native to south-central USA. Estrogenic and antiestrogenic activities of latex extract and its phytochemicals were evaluated with a steroid-regulated yeast system expressing the human estrogen receptor α and antiproliferative properties were assessed in the ER-positive MCF-7 and T47-D and triple-negative MDA-MB-231 and MDA-MB-469 breast carcinomas. Genistein and coumestrol identified in the latex extract induced higher estrogenic and antiestrogenic activities compared to diterpenes and flavonoids. The latex extract, resiniferatoxin (RTX) and rutin induced antiproliferative activities in all cell lines in a dose-dependent manner, but not in human normal primary dermal fibroblast cultures. A biphasic effect was observed with MDA-MB-468 breast carcinoma in which the latex extract at low concentrations increased and at high concentrations decreased cell proliferation. Treatments with latex extract in combination with RTX or rutin reduced even more the proliferation of MCF-7 breast carcinoma compared to the individual latex, RTX, and rutin treatments. E. bicolor latex phytochemicals could contribute to developing commercial therapeutic agents for breast cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Antagonistas de Estrogênios/farmacologia , Euphorbia/química , Látex/química , Neoplasias da Mama , Linhagem Celular Tumoral , Diterpenos/farmacologia , Congêneres do Estradiol/farmacologia , Humanos , Compostos Fitoquímicos , Extratos Vegetais/farmacologia
6.
Oxid Med Cell Longev ; 2019: 8594375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612077

RESUMO

Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.


Assuntos
Citocinas/metabolismo , Euphorbiaceae/química , Dor Facial/tratamento farmacológico , Látex/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Modelos Animais de Doenças , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
7.
Front Pharmacol ; 10: 958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551772

RESUMO

The negative side effects of opioid-based narcotics underscore the search for alternative non-opioid bioactive compounds that act on the peripheral nervous system to avoid central nervous system-mediated side effects. The transient receptor potential V1 ion channel (TRPV1) is a peripheral pain generator activated and sensitized by heat, capsaicin, and a variety of endogenous ligands. TRPV1 contributes to peripheral sensitization and hyperalgesia, in part, via triggering the release of proinflammatory peptides, such as calcitonin gene-related peptide (CGRP), both locally and at the dorsal horn of the spinal cord. Ultrapotent exogenous TRPV1 agonists, such as resiniferatoxin identified in the latex of the exotic Euphorbia resinifera, trigger hyperalgesia followed by long lasting, peripheral analgesia. The present study reports on the analgesic properties of Euphorbia bicolor, a relative of E. resinifera, native to the Southern United States. The study hypothesized that E. bicolor latex extract induces long-lasting, non-opioid peripheral analgesia in a rat model of inflammatory pain. Both inflamed and non-inflamed adult male and female rats were injected with the methanolic extract of E. bicolor latex into the hindpaw and changes in pain behaviors were reassessed at various time points up to 4 weeks. Primary sensory neuron cultures also were treated with the latex extract or vehicle for 15 min followed by stimulation with the TRPV1 agonist capsaicin. Results showed that E. bicolor latex extract evoked significant pain behaviors in both male and female rats at 20 min post-injection and lasting around 1-2 h. At 6 h post-injection, analgesia was observed in male rats that lasted up to 4 weeks, whereas in females the onset of analgesia was delayed to 72 h post-injection. In sensory neurons, latex extract significantly reduced capsaicin-evoked CGRP release. Blocking TRPV1, but not opioid receptors, attenuated the onset of analgesia and capsaicin-induced CGRP release. Latex was analyzed by mass spectrometry and eleven candidate compounds were identified and reported here. These findings indicate that phytochemicals in the E. bicolor latex induce hyperalgesia followed by peripheral, non-opioid analgesia in both male and female rats, which occurs in part via TRPV1 and may provide novel, non-opioid peripheral analgesics that warrant further examination.

8.
Biomed Pharmacother ; 107: 1648-1666, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30257383

RESUMO

Breast cancer is one of the leading causes of cancer-related morbidity and mortality among women worldwide. Phytoestrogens, plant-derived polyphenols that structurally and functionally mimic 17ß-estradiol, the mammalian estrogen hormone, are known to modulate multiple molecular targets in breast cancer cells. The structural and chemical similarities to estradiol enable phytoestrogens to exert estrogenic or antiestrogenic activities by binding to the estrogen receptors. Although phytoestrogens have low affinity for estrogen receptors, they are able to compete with 17ß-estradiol for the ligand-binding domain of the receptors. Phytoestrogens trigger epigenomic effects that could be beneficial in breast cancer prevention and/or treatment. Few studies have focused on the cytotoxic and structure-activity relationships of phytoestrogen analogs and derivatives with more effective anticancer properties than their corresponding parent compounds. Phytoestrogens and their analogs and derivatives bind to estrogen receptors, with a preferential affinity for ERß, and inhibit the growth promoting activity of ERα. These bioactive compounds also exert growth inhibitory effects through various cell signaling pathways. At the level of cell cycle, they inhibit the expression of oncogenic cyclin D1, increase the expression of cyclin-dependent kinase inhibitors (p21, p27, and p57) and tumor suppressor genes (APC, ATM, PTEN, SERPINB5). Phytoestrogens and their analogs and derivatives mediate their effects on breast cancer by inhibiting estrogen synthesis and metabolism, as well as exerting antiangiogenic, antimetastatic, and epigenetic effects. Furthermore, these bioactive compounds reverse multi-drug resistance. This review offers a comprehensive summary of current literature and future perspectives on the in vitro molecular mechanisms of the anticancer activities of phytoestrogens and their analogs and derivatives on breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fitoestrógenos/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/patologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Humanos , Fitoestrógenos/química , Receptores de Estrogênio/metabolismo
9.
Pharmacognosy Res ; 8(4): 258-264, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695265

RESUMO

BACKGROUND: Fruits are considered one of the richest sources of natural antioxidants. Their consumption has been linked to the prevention of oxidative stress-induced diseases. OBJECTIVE: In this study, in vitro antioxidant activities of blueberry, jackfruit, blackberry, black raspberry, red raspberry, strawberry, and California table grape extracts were evaluated. MATERIALS AND METHODS: Antioxidant activities were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), nitric oxide (NO), superoxide anion (O2-) scavenging assays, and ferric reducing power. RESULTS: Black raspberry extract had the highest phenolic (965.6 ± 2.9 mg gallic acid equivalents [GAE]/g), flavonoid (186.4 ± 1.7 mg quercetin equivalents/g), and proanthocyanidin (2677 ± 71.1 mg GAE/g) contents. All fruit extracts exhibited increasing radical scavenging activities with increased concentrations. At 100 µg/ml, red raspberry extract showed the highest ferric reducing power (A700 =0.3 ± 0.0052) and FRAP activity (A593 =11.43 mM Fe2+/g). Black raspberry extract (100 µg/ml) exhibited the highest DPPH activity (A517 =89.03 ± 0.0471). Jackfruit extract (100 µg/ml) had the highest ABTS (A734 =35.6 ± 0.613), NO (A540 =81.7 ± 0.2), and O2- radical scavenging (A230 =55.5 ± 0.2) activities. Positive correlations were observed between IC50 values for different radical scavenging activities and different polyphenolics. Red raspberry extract had the highest Pearson's coefficient values (0.952-1) between total phenolics, flavonoids, and proanthocyanidins and DPPH and superoxide radical scavenging activities. CONCLUSIONS: The antioxidant rich fruits in this study are good source of functional food and nutraceuticals that have the potential to improve human health. SUMMARY: All fruit extracts exhibited increasing radical scavenging activities with increased concentrationsBlack raspberry extract is enriched in total phenols, flavonoids, and proanthocyanidins and showed the highest 2,2-diphenyl-1-picrylhydrazyl scavenging activity and red raspberry extract showed the highest ferric reducing power and ferric reducing antioxidant potential activityJackfruit extract exhibited the highest 2,2'azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt, nitric oxide, O2- scavenging activitiesPositive correlations were observed between IC50 values for different radical scavenging activities and different polyphenolics. Abbreviations Used: Abs: Absorbance, ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, BHT: Butylated hydroxytoluene, DPPH: 2,2-diphenyl-1-picrylhydrazyl, DW: Dry weight, FRAP: Ferric reducing antioxidant potential, FW: Fresh weight, GAE: Gallic acid equivalents, NADH: ß-nicotinamide adenine dinucleotide hydrate, NFL: The National Food Laboratories, NO: Nitric oxide, ONPG: ortho-nitrophenyl-ß-galactoside, PBS: Phosphate buffered saline, PMS: Phenazine methosulfate, QE: Quercetin equivalents, ROS: Reactive oxygen species, SD: Standard deviation, SOD: Superoxide dismutase, TCA: Trichloroacetic acid, TPTZ: 2,4,6-tris(2-pyridyl)-s-triazine, Trolox: (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...