Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(22): 8390-8403, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846409

RESUMO

Understanding the relationship between multiscale morphology and electronic structure is a grand challenge for semiconducting soft materials. Computational studies aimed at characterizing these relationships require the complex integration of quantum-chemical (QC) calculations, all-atom and coarse-grained (CG) molecular dynamics simulations, and back-mapping approaches. However, these methods pose substantial computational challenges that limit their application to the requisite length scales of soft material morphologies. Here, we demonstrate the bottom-up electronic coarse-graining (ECG) of morphology-dependent electronic structure in the liquid-crystal-forming semiconductor, 2-(4-methoxyphenyl)-7-octyl-benzothienobenzothiophene (BTBT). ECG is applied to construct density functional theory (DFT)-accurate valence band Hamiltonians of the isotropic and smectic liquid crystal (LC) phases using only the CG representation of BTBT. By bypassing the atomistic resolution and its prohibitive computational costs, ECG enables the first calculations of the morphology dependence of the electronic structure of charge carriers across LC phases at the ∼20 nm length scale, with robust statistical sampling. Kinetic Monte Carlo (kMC) simulations reveal a strong morphology dependence on zero-field charge mobility among different LC phases as well as the presence of two-molecule charge carriers that act as traps and hinder charge transport. We leverage these results to further evaluate the feasibility of developing mesoscopic, field-based ECG models in future works. The fully CG approach to electronic property predictions in LC semiconductors opens a new computational direction for designing electronic processes in soft materials at their characteristic length scales.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193551

RESUMO

Bottom-up methods for coarse-grained (CG) molecular modeling are critically needed to establish rigorous links between atomistic reference data and reduced molecular representations. For a target molecule, the ideal reduced CG representation is a function of both the conformational ensemble of the system and the target physical observable(s) to be reproduced at the CG resolution. However, there is an absence of algorithms for selecting CG representations of molecules from which complex properties, including molecular electronic structure, can be accurately modeled. We introduce continuously gated message passing (CGMP), a graph neural network (GNN) method for atomically decomposing molecular electronic structure sampled over conformational ensembles. CGMP integrates 3D-invariant GNNs and a novel gated message passing system to continuously reduce the atomic degrees of freedom accessible for electronic predictions, resulting in a one-shot importance ranking of atoms contributing to a target molecular property. Moreover, CGMP provides the first approach by which to quantify the degeneracy of "good" CG representations conditioned on specific prediction targets, facilitating the development of more transferable CG representations. We further show how CGMP can be used to highlight multiatom correlations, illuminating a path to developing CG electronic Hamiltonians in terms of interpretable collective variables for arbitrarily complex molecules.

3.
J Chem Theory Comput ; 19(15): 4982-4990, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37404002

RESUMO

Coarse-grained (CG) simulations are an important computational tool in chemistry and materials science. Recently, systematic "bottom-up" CG models have been introduced to capture electronic structure variations of molecules and polymers at the CG resolution. However, the performance of these models is limited by the ability to select reduced representations that preserve electronic structure information, which remains a challenge. We propose two methods for (i) identifying important electronically coupled atomic degrees of freedom and (ii) scoring the efficacy of CG representations used in conjunction with CG electronic predictions. The first method is a physically motivated approach that incorporates nuclear vibrations and electronic structure derived from simple quantum chemical calculations. We complement this physically motivated approach with a machine learning technique based on the marginal contribution of nuclear degrees of freedom to electronic prediction accuracy using an equivariant graph neural network. By integrating these two approaches, we can both identify critical electronically coupled atomic coordinates and score the efficacy of arbitrary CG representations for making electronic predictions. We leverage this capability to make a connection between optimized CG representations and the future potential for "bottom-up" development of simplified model Hamiltonians incorporating nonlinear vibrational modes.

4.
J Chem Phys ; 157(17): 174102, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347700

RESUMO

We employ deep kernel learning electronic coarse-graining (DKL-ECG) with approximate Gaussian processes as a flexible and scalable framework for learning heteroscedastic electronic property distributions as a smooth function of coarse-grained (CG) configuration. The appropriateness of the Gaussian prior on predictive CG property distributions is justified as a function of CG model resolution by examining the statistics of target distributions. The certainties of predictive CG distributions are shown to be limited by CG model resolution with DKL-ECG predictive noise converging to the intrinsic physical noise induced by the CG mapping operator for multiple chemistries. Further analysis of the resolution dependence of learned CG property distributions allows for the identification of CG mapping operators that capture CG degrees of freedom with strong electron-phonon coupling. We further demonstrate the ability to construct the exact quantum chemical valence electronic density of states (EDOS), including behavior in the tails of the EDOS, from an entirely CG model by combining iterative Boltzmann inversion and DKL-ECG. DKL-ECG provides a means of learning CG distributions of all-atom properties that are traditionally "lost" in CG model development, introducing a promising methodological alternative to backmapping algorithms commonly employed to recover all-atom property distributions from CG simulations.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Distribuição Normal , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...