Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443829

RESUMO

Glomerular disease due to podocyte malfunction is a major factor in the pathogenesis of chronic kidney disease. Identification of podocyte-specific signaling pathways is therefore a prerequisite to characterizing relevant disease pathways and developing novel treatment approaches. Here, we employed loss of function studies for EPB41L5 (Yurt) as a central podocyte gene to generate a cell type-specific disease model. Loss of Yurt in fly nephrocytes caused protein uptake and slit diaphragm defects. Transcriptomic and proteomic analysis of human EPB41L5 knockout podocytes demonstrated impaired mechanotransduction via the YAP/TAZ signaling pathway. Further analysis of specific inhibition of the YAP/TAZ-TEAD transcription factor complex by TEADi led to the identification of ARGHAP29 as an EPB41L5 and YAP/TAZ-dependently expressed podocyte RhoGAP. Knockdown of ARHGAP29 caused increased RhoA activation, defective lamellipodia formation, and increased maturation of integrin adhesion complexes, explaining similar phenotypes caused by loss of EPB41L5 and TEADi expression in podocytes. Detection of increased levels of ARHGAP29 in early disease stages of human glomerular disease implies a novel negative feedback loop for mechanotransductive RhoA-YAP/TAZ signaling in podocyte physiology and disease.


Assuntos
Podócitos , Humanos , Podócitos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP , Mecanotransdução Celular , Integrinas/metabolismo , Proteômica , Proteína rhoA de Ligação ao GTP/metabolismo , Transdução de Sinais , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/metabolismo
2.
Cells ; 11(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455939

RESUMO

Steroid-resistant nephrotic syndrome (SRNS) frequently leads to end-stage renal disease, ultimately requiring kidney replacement therapies. SRNS is often caused by hereditary monogenic mutations, specifically affecting specialized epithelial cells (podocytes) of the glomerular filtration barrier. Mutations in several components of the nuclear pore complex, including NUP133 and NUP107, have been recently identified to cause hereditary SRNS. However, underlying pathomechanisms, eliciting podocyte-specific manifestations of these nucleoporopathies, remained largely elusive. Here, we generated an in vitro model of NUP133-linked nucleoporopathies using CRISPR/Cas9-mediated genome editing in human podocytes. Transcriptome, nuclear pore assembly, and cytoskeleton regulation of NUP133 loss-of-function, mutant, and wild-type podocytes were analyzed. Loss of NUP133 translated into a disruption of the nuclear pore, alterations of the podocyte-specific transcriptome, and impaired cellular protrusion generation. Surprisingly, comparative analysis of the described SRNS-related NUP133 mutations revealed only mild defects. Am impaired protein interaction in the Y-complex and decrease of NUP133 protein levels might be the primary and unifying consequence of mutant variants, leading to a partial loss-of-function phenotype and disease manifestation in susceptible cell types, such as podocytes.


Assuntos
Antígenos de Histocompatibilidade Menor , Síndrome Nefrótica , Complexo de Proteínas Formadoras de Poros Nucleares , Podócitos , Citoesqueleto/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Podócitos/metabolismo , Transcriptoma
3.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35260418

RESUMO

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Assuntos
Barreira de Filtração Glomerular , Proteínas dos Microfilamentos , Podócitos , Animais , Barreira de Filtração Glomerular/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo
4.
Cells ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203913

RESUMO

Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.


Assuntos
Hematopoese Extramedular/fisiologia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/microbiologia , Animais , Modelos Animais de Doenças , Disbiose/patologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Glomerulosclerose Segmentar e Focal/patologia , Hematopoese Extramedular/genética , Humanos , Nefropatias/fisiopatologia , Macrófagos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Síndrome Nefrótica/fisiopatologia , Podócitos/metabolismo , Cultura Primária de Células , Proteínas/metabolismo , Proteinúria/metabolismo
5.
Cell Rep ; 34(12): 108883, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761352

RESUMO

The integrity of the kidney filtration barrier essentially relies on the balanced interplay of podocytes and the glomerular basement membrane (GBM). Here, we show by analysis of in vitro and in vivo models that a loss of the podocyte-specific FERM-domain protein EPB41L5 results in impaired extracellular matrix (ECM) assembly. By using quantitative proteomics analysis of the secretome and matrisome, we demonstrate a shift in ECM composition characterized by diminished deposition of core GBM components, such as LAMA5. Integrin adhesome proteomics reveals that EPB41L5 recruits PDLIM5 and ACTN4 to integrin adhesion complexes (IACs). Consecutively, EPB41L5 knockout podocytes show insufficient maturation of integrin adhesion sites, which translates into impaired force transmission and ECM assembly. These observations build the framework for a model in which EPB41L5 functions as a cell-type-specific regulator of the podocyte adhesome and controls a localized adaptive module in order to prevent podocyte detachment and thereby ensures GBM integrity.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Fenômenos Biomecânicos , Bovinos , Adesão Celular , Proteínas do Citoesqueleto/química , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Masculino , Proteínas de Membrana/química , Camundongos , Proteínas dos Microfilamentos/metabolismo , Podócitos/ultraestrutura , Domínios Proteicos , Secretoma
6.
J Am Soc Nephrol ; 32(3): 563-579, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33514561

RESUMO

BACKGROUND: Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS: We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS: We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS: SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Podócitos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas Ativadoras de GTPase/deficiência , Proteínas Ativadoras de GTPase/genética , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/ultraestrutura , Mapeamento de Interação de Proteínas , Proteoma , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Transcriptoma
7.
Dev Cell ; 47(6): 741-757.e8, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503751

RESUMO

Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion.


Assuntos
Proteína 3 Relacionada a Actina/fisiologia , Barreira de Filtração Glomerular/fisiologia , Podócitos/fisiologia , Citoesqueleto de Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Adesão Celular , Adesões Focais/metabolismo , Barreira de Filtração Glomerular/metabolismo , Humanos , Rim/metabolismo , Rim/fisiologia , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Transdução de Sinais , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo
8.
PLoS One ; 13(7): e0200487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001384

RESUMO

Podocytes are highly-specialized epithelial cells essentially required for the generation and the maintenance of the kidney filtration barrier. This elementary function is directly based on an elaborated cytoskeletal apparatus establishing a complex network of primary and secondary processes. Here, we identify the actin-bundling protein allograft-inflammatory-inhibitor 1 like (AIF1L) as a selectively expressed podocyte protein in vivo. We describe the distinct subcellular localization of AIF1L to actin stress fibers, focal adhesion complexes and the nuclear compartment of podocytes in vitro. Genetic deletion of AIF1L in immortalized human podocytes resulted in an increased formation of filopodial extensions and decreased actomyosin contractility. By the use of SILAC based quantitative proteomics analysis we describe the podocyte specific AIF1L interactome and identify several components of the actomyosin machinery such as MYL9 and UNC45A as potential AIF1L interaction partners. Together, these findings indicate an involvement of AIF1L in the stabilization of podocyte morphology by titrating actomyosin contractility and membrane dynamics.


Assuntos
Actomiosina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Podócitos/metabolismo , Pseudópodes/metabolismo , Células Cultivadas , Adesões Focais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias Leves de Miosina/metabolismo , Podócitos/citologia , Fibras de Estresse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...