Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 607(7920): 714-720, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896647

RESUMO

Ice speeds in Greenland are largely set by basal motion1, which is modulated by meltwater delivery to the ice base2-4. Evidence suggests that increasing melt rates enhance the subglacial drainage network's capacity to evacuate basal water, increasing bed friction and causing the ice to slow5-10. This limits the potential of melt forcing to increase mass loss as temperatures increase11. Here we show that melt forcing has a pronounced influence on dynamics, but factors besides melt rates primarily control its impact. Using a method to examine friction variability across the entirety of western Greenland, we show that the main impact of melt forcing is an abrupt north-to-south change in bed strength that cannot be explained by changes in melt production. The southern ablation zone is weakened by 20-40 per cent compared with regions with no melt, whereas in northern Greenland the ablation zone is strengthened. We show that the weakening is consistent with persistent basal water storage and that the threshold is linked to differences in sliding and hydropotential gradients, which exert primary control on the pressures within drainage pathways that dewater the bed. These characteristics are mainly set by whether a margin is land or marine terminating, suggesting that dynamic changes that increase mass loss are likely to occur in northern Greenland as temperatures increase. Our results point to physical representations of these findings that will improve simulated ice-sheet evolution at centennial scales.

2.
Sci Adv ; 5(7): eaaw5406, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31309154

RESUMO

On the Greenland Ice Sheet (GrIS), ice flow due to deformation and sliding across the bed delivers ice to lower-elevation marginal regions where it can melt. We measured the two mechanisms of motion using a three-dimensional array of 212 tilt sensors installed within a network of boreholes drilled to the bed in the ablation zone of GrIS. Unexpectedly, sliding completely dominates ice motion all winter, despite a hard bedrock substrate and no concurrent surface meltwater forcing. Modeling constrained by detailed tilt observations made along the basal interface suggests that the high sliding is due to a slippery bed, where sparsely spaced bedrock bumps provide the limited resistance to sliding. The conditions at the site are characterized as typical of ice sheet margins; thus, most ice flow near the margins of GrIS is mainly from sliding, and marginal ice fluxes are near their theoretical maximum for observed surface speeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...