Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698501

RESUMO

Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely "fluid flow in porous media", "flow in heterogeneous rocks and fractures", "reactive transport, solute and colloid transport", and finally "porous media characterization". In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.

2.
Micromachines (Basel) ; 9(8)2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30424342

RESUMO

Conventional manufacturing of microfluidic devices from glass substrates is a complex, multi-step process that involves different fabrication techniques and tools. Hence, it is time-consuming and expensive, in particular for the prototyping of microfluidic devices in low quantities. This article describes a laser-based process that enables the rapid manufacturing of enclosed micro-structures by laser micromachining and microwelding of two 1.1-mm-thick borosilicate glass plates. The fabrication process was carried out only with a picosecond laser (Trumpf TruMicro 5×50) that was used for: (a) the generation of microfluidic patterns on glass, (b) the drilling of inlet/outlet ports into the material, and (c) the bonding of two glass plates together in order to enclose the laser-generated microstructures. Using this manufacturing approach, a fully-functional microfluidic device can be fabricated in less than two hours. Initial fluid flow experiments proved that the laser-generated microstructures are completely sealed; thus, they show a potential use in many industrial and scientific areas. This includes geological and petroleum engineering research, where such microfluidic devices can be used to investigate single-phase and multi-phase flow of various fluids (such as brine, oil, and CO2) in porous media.

3.
Rev Sci Instrum ; 85(2): 024502, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593375

RESUMO

A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 µm maximum actuator stroke, a 1.4 µm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

4.
Opt Express ; 21(19): 22742-53, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104161

RESUMO

We present high average power picosecond and nanosecond pulse delivery at 1030 nm and 1064 nm wavelengths respectively through a novel hollow-core Negative Curvature Fiber (NCF) for high-precision micro-machining applications. Picosecond pulses with an average power above 36 W and energies of 92 µJ, corresponding to a peak power density of 1.5 TWcm⁻² have been transmitted through the fiber without introducing any damage to the input and output fiber end-faces. High-energy nanosecond pulses (>1 mJ), which are ideal for micro-machining have been successfully delivered through the NCF with a coupling efficiency of 92%. Picosecond and nanosecond pulse delivery have been demonstrated in fiber-based laser micro-machining of fused silica, aluminum and titanium.

5.
Appl Opt ; 45(36): 9041-8, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17151742

RESUMO

We describe the use of arrayed waveguide gratings (AWGs) in the interrogation of fiber Bragg gratings (FBGs) for dynamic strain measurement. The ratiometric AWG output was calibrated in a static deflection experiment over a +/-200 microepsilon range. Dynamic strain measurement was demonstrated with a FBG in a conventional single-mode fiber mounted on the surface of a vibrating cantilever and on a piezoelectric actuator, giving a resolution of 0.5 microepsilon at 2.4 kHz. We present results of this technique extended to measure the dynamic differential strain between two FBG pairs within a multicore fiber. An arbitrary cantilever oscillation of the multicore fiber was determined from curvature measurements in two orthogonal axes at 1125 Hz with a resolution of 0.05 m(-1).

6.
Opt Lett ; 29(23): 2722-4, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15605484

RESUMO

We present a fiber interferometer for the simultaneous measurement of phase at multiple wavelengths from a single broadband femtosecond laser. Narrow-bandwidth fiber Bragg gratings isolate a particular frequency from the broad-bandwidth laser pulse produced. The multiwavelength phase data permit the unambiguous measurement range to be significantly increased compared with the wavelengths used in the interferometer. Preliminary experimental results are presented for a two-frequency sensor with an absolute range of 0.13 mm and associated dynamic range of 43,000:1.

7.
Appl Opt ; 43(13): 2744-51, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15130015

RESUMO

We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 degrees C to 80 degrees C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...