Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 660456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124150

RESUMO

The early-life metabolome of the intestinal tract is dynamically influenced by colonization of gut microbiota which in turn is affected by nutrition, i.e. breast milk or formula. A detailed examination of fecal metabolites was performed to investigate the effect of probiotics in formula compared to control formula and breast milk within the first months of life in healthy neonates. A broad metabolomics approach was conceptualized to describe fecal polar and semi-polar metabolites affected by feeding type within the first year of life. Fecal metabolomes were clearly distinct between formula- and breastfed infants, mainly originating from diet and microbial metabolism. Unsaturated fatty acids and human milk oligosaccharides were increased in breastfed, whereas Maillard products were found in feces of formula-fed children. Altered microbial metabolism was represented by bile acids and aromatic amino acid metabolites. Elevated levels of sulfated bile acids were detected in stool samples of breastfed infants, whereas secondary bile acids were increased in formula-fed infants. Microbial co-metabolism was supported by significant correlation between chenodeoxycholic or lithocholic acid and members of Clostridia. Fecal metabolites showed strong inter- and intra-individual behavior with features uniquely present in certain infants and at specific time points. Nevertheless, metabolite profiles converged at the end of the first year, coinciding with solid food introduction.

2.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042495

RESUMO

Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of "omics" approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes, including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.IMPORTANCE This work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the metabolic pathways that they carry out. Together, these data provide a more complete picture of the function of the gut microbiome in digestion, including links between an RS diet and lipid metabolism and novel linkages between specific gut microbes and their metabolites and proteins produced in the gut.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Amido/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dieta/métodos , Humanos , Metabolômica , Proteômica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Am J Clin Nutr ; 106(5): 1274-1286, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28877893

RESUMO

Background: Early-life colonization of the intestinal tract is a dynamic process influenced by numerous factors. The impact of probiotic-supplemented infant formula on the composition and function of the infant gut microbiota is not well defined.Objective: We sought to determine the effects of a bifidobacteria-containing formula on the healthy human intestinal microbiome during the first year of life.Design: A double-blind, randomized, placebo-controlled study of newborn infants assigned to a standard whey-based formula containing a total of 107 colony-forming units (CFU)/g of Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, B. longum subspecies infantis (intervention), or to a control formula without bifidobacteria (placebo). Breastfed controls were included. Diversity and composition of fecal microbiota were determined by 16S ribosomal RNA gene amplicon sequencing, and metabolite profiles were analyzed by ultrahigh-performance liquid chromatography-mass spectrometry over a period of 2 y.Results: Infants (n = 106) were randomly assigned to either the interventional (n = 48) or placebo (n = 49) group; 9 infants were exclusively breastfed throughout the entire intervention period of 12 mo. Infants exposed to bifidobacteria-supplemented formula showed decreased occurrence of Bacteroides and Blautia spp. associated with changes in lipids and unknown metabolites at month 1. Microbiota and metabolite profiles of intervention and placebo groups converged during the study period, and long-term colonization (24 mo) of the supplemented Bifidobacterium strains was not detected. Significant differences in microbiota and metabolites were detected between infants fed breast milk and those fed formula (P < 0.005) and between infants birthed vaginally and those birthed by cesarean delivery (P < 0.005). No significant differences were observed between infant feeding groups regarding growth, antibiotic uptake, or other health variables (P > 0.05).Conclusion: The supplementation of bifidobacteria to infant diet can modulate the occurrence of specific bacteria and metabolites during early life with no detectable long-term effects. This trial was registered at germanctr.de as DRKS00003660.


Assuntos
Bifidobacterium , Fezes/microbiologia , Microbioma Gastrointestinal , Metaboloma , Probióticos/administração & dosagem , Aleitamento Materno , Método Duplo-Cego , Ácidos Graxos Voláteis/análise , Fezes/química , Feminino , Humanos , Lactente , Fórmulas Infantis/química , Fórmulas Infantis/microbiologia , Recém-Nascido , Intestinos/microbiologia , Masculino , Leite Humano/química , Oligossacarídeos/análise , RNA Ribossômico 18S/isolamento & purificação , Análise de Sequência de DNA
4.
Int J Med Microbiol ; 306(5): 266-279, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27012595

RESUMO

The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.


Assuntos
Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Metabolômica/métodos , Microbiota , Animais , Modelos Animais de Doenças , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...