Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Neurol Sci ; 462: 123090, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38865876

RESUMO

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder is a demyelinating and inflammatory affliction that often leads to visual disturbance. Various imaging techniques, including free-water imaging, have been used to determine neuroinflammation and degeneration. Therefore, this study aimed at determining multimodal imaging differences between patients with neuromyelitis optica spectrum disorder, especially those with visual disturbance, and healthy controls. MATERIALS AND METHODS: Eighty-five neuromyelitis optica spectrum disorder patients and 89 age- and sex-matched healthy controls underwent 3-T magnetic resonance imaging (MRI). We analyzed adjusted brain-predicted age difference, voxel-based morphometry, and free-water-corrected diffusion tensor imaging (DTI) by tract-based spatial statistics in each patient group (MRI-positive/negative neuromyelitis optica spectrum disorder patients with or without a history of visual disturbance) compared with the healthy control group. RESULTS: MRI-positive neuromyelitis optica spectrum disorder patients exhibited reduced volumes of the bilateral thalamus. Tract-based spatial statistics showed diffuse white matter abnormalities in all DTI metrics in MRI-positive neuromyelitis optica spectrum disorder patients with a history of visual disturbance. In MRI-negative neuromyelitis optica spectrum disorder patients with a history of visual disturbance, voxel-based morphometry showed volume reduction of bilateral thalami and optic radiations, and tract-based spatial statistics revealed significantly lower free-water-corrected fractional anisotropy and higher mean diffusivity in the posterior dominant distributions, including the optic nerve radiation. CONCLUSION: Free-water-corrected DTI and voxel-based morphometry analyses may reflect symptoms of visual disturbance in neuromyelitis optica spectrum disorder.

2.
J Alzheimers Dis ; 99(4): 1441-1453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759008

RESUMO

Background: Cortical neurodegenerative processes may precede the emergence of disease symptoms in patients with Alzheimer's disease (AD) by many years. No study has evaluated the free water of patients with AD using gray matter-based spatial statistics. Objective: The aim of this study was to explore cortical microstructural changes within the gray matter in AD by using free water imaging with gray matter-based spatial statistics. Methods: Seventy-one participants underwent multi-shell diffusion magnetic resonance imaging, 11C-Pittsburgh compound B positron emission tomography, and neuropsychological evaluations. The patients were divided into two groups: healthy controls (n = 40) and the AD spectrum group (n = 31). Differences between the groups were analyzed using voxel-based morphometry, diffusion tensor imaging, and free water imaging with gray matter-based spatial statistics. Results: Voxel-based morphometry analysis revealed gray matter volume loss in the hippocampus of patients with AD spectrum compared to that in controls. Furthermore, patients with AD spectrum exhibited significantly greater free water, mean diffusivity, and radial diffusivity in the limbic areas, precuneus, frontal lobe, temporal lobe, right putamen, and cerebellum than did the healthy controls. Overall, the effect sizes of free water were greater than those of mean diffusivity and radial diffusivity, and the larger effect sizes of free water were thought to be strongly correlated with AD pathology. Conclusions: This study demonstrates the utility of applying voxel-based morphometry, gray matter-based spatial statistics, free water imaging and diffusion tensor imaging to assess AD pathology and detect changes in gray matter.


Assuntos
Doença de Alzheimer , Substância Cinzenta , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Idoso , Imagem de Tensor de Difusão , Compostos de Anilina , Tiazóis , Testes Neuropsicológicos , Água , Imagem de Difusão por Ressonância Magnética , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso de 80 Anos ou mais , Processamento de Imagem Assistida por Computador
3.
Transl Psychiatry ; 14(1): 164, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531856

RESUMO

Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Depressivo Maior/patologia , Esquizofrenia/patologia , Estudos Transversais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Ferro
4.
Mol Psychiatry ; 29(5): 1465-1477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332374

RESUMO

Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psychosis later (CHR-PS+) from healthy controls (HCs) that can differentiate each other. We also evaluated whether we could distinguish CHR-PS+ individuals from those who did not develop psychosis later (CHR-PS-) and those with uncertain follow-up status (CHR-UNK). T1-weighted structural brain MRI scans from 1165 individuals at CHR (CHR-PS+, n = 144; CHR-PS-, n = 793; and CHR-UNK, n = 228), and 1029 HCs, were obtained from 21 sites. We used ComBat to harmonize measures of subcortical volume, cortical thickness and surface area data and corrected for non-linear effects of age and sex using a general additive model. CHR-PS+ (n = 120) and HC (n = 799) data from 20 sites served as a training dataset, which we used to build a classifier. The remaining samples were used external validation datasets to evaluate classifier performance (test, independent confirmatory, and independent group [CHR-PS- and CHR-UNK] datasets). The accuracy of the classifier on the training and independent confirmatory datasets was 85% and 73% respectively. Regional cortical surface area measures-including those from the right superior frontal, right superior temporal, and bilateral insular cortices strongly contributed to classifying CHR-PS+ from HC. CHR-PS- and CHR-UNK individuals were more likely to be classified as HC compared to CHR-PS+ (classification rate to HC: CHR-PS+, 30%; CHR-PS-, 73%; CHR-UNK, 80%). We used multisite sMRI to train a classifier to predict psychosis onset in CHR individuals, and it showed promise predicting CHR-PS+ in an independent sample. The results suggest that when considering adolescent brain development, baseline MRI scans for CHR individuals may be helpful to identify their prognosis. Future prospective studies are required about whether the classifier could be actually helpful in the clinical settings.


Assuntos
Encéfalo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neuroimagem , Transtornos Psicóticos , Humanos , Transtornos Psicóticos/patologia , Transtornos Psicóticos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Adulto Jovem , Adolescente , Sintomas Prodrômicos
5.
JAMA Netw Open ; 7(2): e2355292, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329755

RESUMO

Importance: Few studies have used a large-sample, longitudinal, population-based cohort study to examine whether the COVID-19 pandemic as a global major life event is associated with structural plasticity of the adolescent hippocampus. Objective: To examine whether Japan's first state of emergency (SoE) during the COVID-19 pandemic was associated with alterations in the macrostructures and microstructures of the hippocampus during its development. Design, Setting, and Participants: The population-neuroscience Tokyo TEEN Cohort study is a prospective cohort study with 4 consecutive waves in Tokyo, Japan. Due to the SoE, data collection was suspended between March 27, 2020, and July 30, 2020. Analyzed data, comprising 1149 brain structural scans obtained from 479 participants, of whom 336 participants had undergone 2 or more scans, were collected between October 2013 and November 2021. Data were analyzed from August 2022 to December 2023. Exposures: Japan's first SoE (April 7 to May 25, 2020). Main Outcomes and Measures: Hippocampal volume, 12 hippocampal subfield volumes, and 7 microstructural measures of the hippocampus. Results: A total of 1060 brain scans from 459 participants (214 female participants [47%]) including 246 participants from wave 1 (median [IQR] age, 11.3 [11.1-11.7] years), 358 from wave 2 (median [IQR] age, 13.8 [13.3-14.5] years), 304 from wave 3 (median [IQR] age, 15.9 [15.4-16.5] years), and 152 from wave 4 (median [IQR] age, 17.9 [17.5-18.4] years) were included in the final main analysis. The generalized additive mixed model showed a significant associations of the SoE with the mean hippocampal volume (ß = 102.19; 95% CI, 0.61-203.77; P = .049). The generalized linear mixed models showed the main associations of the SoE with hippocampal subfield volume (granule cell and molecular layer of the dentate gyrus: ß = 18.19; 95% CI, 2.97-33.41; uncorrected P = .02; CA4: ß = 12.75; 95% CI, 0.38-25.12; uncorrected P = .04; hippocampus-amygdala transition area: ß = 5.67; 95% CI, 1.18-10.17; uncorrected P = .01), and fractional anisotropy (ß = 0.03; 95% CI, 0.00-0.06; uncorrected P = .04). Conclusions and Relevance: After the first SoE, a volumetric increase in the hippocampus and trend increase in 3 subfield volumes and microstructural integration of the hippocampus were observed, suggesting that the transient plasticity of the adolescent hippocampus was affected by a major life event along with the typical developmental trajectory.


Assuntos
COVID-19 , Humanos , Feminino , Adolescente , Criança , Estudos de Coortes , Japão/epidemiologia , Pandemias , Estudos Prospectivos , Hipocampo/diagnóstico por imagem
6.
Mol Psychiatry ; 29(4): 891-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246936

RESUMO

Although brain morphological abnormalities have been reported in anorexia nervosa (AN), the reliability and reproducibility of previous studies were limited due to insufficient sample sizes, which prevented exploratory analysis of the whole brain as opposed to regions of interest (ROIs). Objective was to identify brain morphological abnormalities in AN and the association with severity of AN by brain structural magnetic resonance imaging (MRI) in a multicenter study, and to conduct exploratory analysis of the whole brain. Here, we conducted a cross-sectional multicenter study using T1-weighted imaging (T1WI) data collected between May 2014 and February 2019 in Japan. We analyzed MRI data from 103 female AN patients (58 anorexia nervosa restricting type [ANR] and 45 anorexia nervosa binge-purging type [ANBP]) and 102 age-matched female healthy controls (HC). MRI data from five centers were preprocessed using the latest harmonization method to correct for intercenter differences. Gray matter volume (GMV) was calculated from T1WI data of all participants. Of the 205 participants, we obtained severity of eating disorder symptom scores from 179 participants, including 87 in the AN group (51 ANR, 36 ANBP) and 92 HC using the Eating Disorder Examination Questionnaire (EDE-Q) 6.0. GMV reduction were observed in the AN brain, including the bilateral cerebellum, middle and posterior cingulate gyrus, supplementary motor cortex, precentral gyrus medial segment, and thalamus. In addition, the orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC), rostral anterior cingulate cortex (ACC), and posterior insula volumes showed positive correlations with severity of symptoms. This multicenter study was conducted with a large sample size to identify brain morphological abnormalities in AN. The findings provide a better understanding of the pathogenesis of AN and have potential for the development of brain imaging biomarkers of AN. Trial Registration: UMIN000017456. https://center6.umin.ac.jp/cgi-open-bin/icdr/ctr_view.cgi?recptno=R000019303 .


Assuntos
Anorexia Nervosa , Substância Cinzenta , Córtex Insular , Imageamento por Ressonância Magnética , Neuroimagem , Córtex Pré-Frontal , Humanos , Feminino , Anorexia Nervosa/patologia , Anorexia Nervosa/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Adulto , Estudos Transversais , Adulto Jovem , Neuroimagem/métodos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Insular/diagnóstico por imagem , Córtex Insular/patologia , Adolescente , Japão , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes
7.
Aging Dis ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029401

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) of brain has helped elucidate the microstructural changes of psychiatric and neurodegenerative disorders. Inconsistency between MRI models has hampered clinical application of dMRI-based metrics. Using harmonized dMRI data of 300 scans from 69 traveling subjects (TS) scanning the same individuals at multiple conditions with 13 MRI models and 2 protocols, the widely-used metrics such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) were evaluated before and after harmonization with a combined association test (ComBat) or TS-based general linear model (TS-GLM). Results showed that both ComBat and TS-GLM significantly reduced the effects of the MRI site, model, and protocol for diffusion metrics while maintaining the intersubject biological effects. The harmonization power of TS-GLM based on TS data model is more powerful than that of ComBat. In conclusion, our research demonstrated that although ComBat and TS-GLM harmonization approaches were effective at reducing the scanner effects of the site, model, and protocol for DTI and NODDI metrics in WM, they exhibited high retainability of biological effects. Therefore, we suggest that, after harmonizing DTI and NODDI metrics, a multisite study with large cohorts can accurately detect small pathological changes by retaining pathological effects.

8.
Diagnostics (Basel) ; 13(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37685313

RESUMO

Regional anatomical structures of the brain are intimately connected to functions corresponding to specific regions and the temporospatial pattern of genetic expression and their functions from the fetal period to old age. Therefore, quantitative brain morphometry has often been employed in neuroscience investigations, while controlling for the scanner effect of the scanner is a critical issue for ensuring accuracy in brain morphometric studies of rare orphan diseases due to the lack of normal reference values available for multicenter studies. This study aimed to provide across-site normal reference values of global and regional brain volumes for each sex and age group in children and adolescents. We collected magnetic resonance imaging (MRI) examinations of 846 neurotypical participants aged 6.0-17.9 years (339 male and 507 female participants) from 5 institutions comprising healthy volunteers or neurotypical patients without neurological disorders, neuropsychological disorders, or epilepsy. Regional-based analysis using the CIVET 2.1.0. pipeline provided regional brain volumes, and the measurements were across-site combined using ComBat-GAM harmonization. The normal reference values of global and regional brain volumes and lateral indices in our study could be helpful for evaluating the characteristics of the brain morphology of each individual in a clinical setting and investigating the brain morphology of ultra-rare diseases.

9.
JMA J ; 6(3): 246-264, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37560377

RESUMO

The Tohoku Medical Megabank Brain Magnetic Resonance Imaging Study (TMM Brain MRI Study) was established to collect multimodal information through neuroimaging and neuropsychological assessments to evaluate the cognitive function and mental health of residents who experienced the Great East Japan Earthquake (GEJE) and associated tsunami. The study also aimed to promote advances in personalized healthcare and medicine related to mental health and cognitive function among the general population. We recruited participants for the first (baseline) survey starting in July 2014, enrolling individuals who were participating in either the TMM Community-Based Cohort Study (TMM CommCohort Study) or the TMM Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study). We collected multiple magnetic resonance imaging (MRI) sequences, including 3D T1-weighted sequences, magnetic resonance angiography (MRA), diffusion tensor imaging (DTI), pseudo-continuous arterial spin labeling (pCASL), and three-dimensional fluid-attenuated inversion recovery (FLAIR) sequences. To assess neuropsychological status, we used both questionnaire- and interview-based rating scales. The former assessments included the Tri-axial Coping Scale, Impact of Event Scale in Japanese, Profile of Mood States, and 15-item Depression, Anxiety, and Stress Scale, whereas the latter assessments included the Mini-Mental State Examination, Japanese version. A total of 12,164 individuals were recruited for the first (baseline) survey, including those unable to complete all assessments. In parallel, we returned the MRI results to the participants and subsequently shared the MRI data through the TMM Biobank. At present, the second (first follow-up) survey of the study started in October 2019 is underway. In this study, we established a large and comprehensive database that included robust neuroimaging data as well as psychological and cognitive assessment data. In combination with genomic and omics data already contained in the TMM Biobank database, these data could provide new insights into the relationships of pathological processes with neuropsychological disorders, including age-related cognitive impairment.

10.
J Neuroimaging ; 33(5): 845-851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243973

RESUMO

BACKGROUND AND PURPOSE: Free-water-corrected diffusion tensor imaging (FW-DTI), a new analysis method for diffusion MRI, can indicate neuroinflammation and degeneration. There is increasing evidence of autoimmune etiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We used FW-DTI and conventional DTI to investigate microstructural brain changes related to autoantibody titers in patients with ME/CFS. METHODS: We prospectively examined 58 consecutive right-handed ME/CFS patients who underwent both brain MRI including FW-DTI and a blood analysis of autoantibody titers against ß1 adrenergic receptor (ß1 AdR-Ab), ß2 AdR-Ab, M3 acetylcholine receptor (M3 AchR-Ab), and M4 AchR-Ab. We investigated the correlations between these four autoantibody titers and three FW-DTI indices-free water (FW), FW-corrected fractional anisotropy (FAt), and FW-corrected mean diffusivity-as well as two conventional DTI indices-fractional anisotropy (FA) and mean diffusivity. The patients' age and gender were considered as nuisance covariates. We also evaluated the correlations between the FW-DTI indices and the performance status and disease duration. RESULTS: Significant negative correlations between the serum levels of several autoantibody titers and DTI indices were identified, mainly in the right frontal operculum. The disease duration showed significant negative correlations with both FAt and FA in the right frontal operculum. The changes in the FW-corrected DTI indices were observed over a wider extent compared to the conventional DTI indices. CONCLUSIONS: These results demonstrate the value of using DTI to assess the microstructure of ME/CFS. The abnormalities of right frontal operculum may be a diagnostic marker for ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Autoanticorpos , Água , Colinérgicos
11.
J Pers Med ; 13(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36983603

RESUMO

Recent developments in image analysis have enabled an individual's brain network to be evaluated and brain age to be predicted from gray matter images. Our study aimed to investigate the effects of age and sex on single-subject gray matter networks using a large sample of healthy participants. We recruited 812 healthy individuals (59.3 ± 14.0 years, 407 females, and 405 males) who underwent three-dimensional T1-weighted magnetic resonance imaging. Similarity-based gray matter networks were constructed, and the following network properties were calculated: normalized clustering, normalized path length, and small-world coefficients. The predicted brain age was computed using a support-vector regression model. We evaluated the network alterations related to age and sex. Additionally, we examined the correlations between the network properties and predicted brain age and compared them with the correlations between the network properties and chronological age. The brain network retained efficient small-world properties regardless of age; however, reduced small-world properties were observed with advancing age. Although women exhibited higher network properties than men and similar age-related network declines as men in the subjects aged < 70 years, faster age-related network declines were observed in women, leading to no differences in sex among the participants aged ≥ 70 years. Brain age correlated well with network properties compared to chronological age in participants aged ≥ 70 years. Although the brain network retained small-world properties, it moved towards randomized networks with aging. Faster age-related network disruptions in women were observed than in men among the elderly. Our findings provide new insights into network alterations underlying aging.

12.
Transl Psychiatry ; 12(1): 511, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36543775

RESUMO

Although many studies have demonstrated structural brain abnormalities associated with auditory verbal hallucinations (AVH) in schizophrenia, the results remain inconsistent because of the small sample sizes and the reliability of clinical interviews. We compared brain morphometries in 204 participants, including 58 schizophrenia patients with a history of AVH (AVH + ), 29 without a history of AVH (AVH-), and 117 healthy controls (HCs) based on a detailed inspection of medical records. We further divided the AVH+ group into 37 patients with and 21 patients without hallucinations at the time of the MRI scans (AVH++ and AVH+-, respectively) via clinical interviews to explore the morphological differences according to the persistence of AVH. The AVH + group had a smaller surface area in the left caudal middle frontal gyrus (F = 7.28, FDR-corrected p = 0.0008) and precentral gyrus (F = 7.68, FDR-corrected p = 0.0006) compared to the AVH- group. The AVH+ patients had a smaller surface area in the left insula (F = 7.06, FDR-corrected p = 0.001) and a smaller subcortical volume in the bilateral hippocampus (right: F = 13.34, FDR-corrected p = 0.00003; left: F = 6.80, FDR-corrected p = 0.001) compared to the HC group. Of these significantly altered areas, the AVH++ group showed significantly smaller bilateral hippocampal volumes compared to the AVH+- group, and a smaller surface area in the left precentral gyrus and caudal middle frontal gyrus compared to the AVH- group. Our findings highlighted the distinct pattern of structural alteration between the history and presence of AVH in schizophrenia, and the importance of integrating multiple criteria to elucidate the neuroanatomical mechanisms.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Reprodutibilidade dos Testes , Alucinações/diagnóstico por imagem , Alucinações/complicações , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
13.
J Pers Med ; 12(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36294692

RESUMO

Alzheimer's disease (AD), the most common type of dementia in elderly individuals, slowly and progressively diminishes the cognitive function. Mild cognitive impairment (MCI) is also a significant risk factor for the onset of AD. Magnetic resonance imaging (MRI) is widely used for the detection and understanding of the natural progression of AD and other neurodegenerative disorders. For proper assessment of these diseases, a reliable database of images from cognitively healthy participants is important. However, differences in magnetic field strength or the sex and age of participants between a normal database and an evaluation data set can affect the accuracy of the detection and evaluation of neurodegenerative disorders. We developed a brain segmentation procedure, based on 30 Japanese brain atlases, and suggest a harmonized Z-score to correct the differences in field strength and sex and age from a large data set (1235 cognitively healthy participants), including 1.5 T and 3 T T1-weighted brain images. We evaluated our harmonized Z-score for AD discriminative power and classification accuracy between stable MCI and progressive MCI. Our procedure can perform brain segmentation in approximately 30 min. The harmonized Z-score of the hippocampus achieved high accuracy (AUC = 0.96) for AD detection and moderate accuracy (AUC = 0.70) to classify stable or progressive MCI. These results show that our method can detect AD with high accuracy and high generalization capability. Moreover, it may discriminate between stable and progressive MCI. Our study has some limitations: the age groups in the 1.5 T data set and 3 T data set are significantly different. In this study, we focused on AD, which is primarily a disease of elderly patients. For other diseases in different age groups, the harmonized Z-score needs to be recalculated using different data sets.

14.
Alzheimers Dement (N Y) ; 8(1): e12356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304723

RESUMO

Introduction: Free-water (FW) imaging, a new analysis method for diffusion magnetic resonance imaging (MRI), can indicate neuroinflammation and degeneration. We evaluated FW in Alzheimer's disease (AD) using tau/inflammatory and amyloid positron emission tomography (PET). Methods: Seventy-one participants underwent multi-shell diffusion MRI, 18F-THK5351 PET, 11C-Pittsburgh compound B PET, and neuropsychological assessments. They were categorized into two groups: healthy controls (HCs) (n = 40) and AD-spectrum group (AD-S) (n = 31) using the Centiloid scale with amyloid PET and cognitive function. We analyzed group comparisons in FW and PET, correlations between FW and PET, and correlation analysis with neuropsychological scores. Results: In AD-S group, there was a significant positive correlation between FW and 18F-THK5351 in the temporal lobes. In addition, there were negative correlations between FW and cognitive function in the temporal lobe and cingulate gyrus, and negative correlations between 18F-THK5351 and cognitive function in the same regions. Discussion: FW imaging could be a biomarker for tau in AD alongside clinical correlations.

15.
Schizophr Bull ; 48(3): 563-574, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352811

RESUMO

BACKGROUND AND HYPOTHESIS: Machine learning approaches using structural magnetic resonance imaging (MRI) can be informative for disease classification; however, their applicability to earlier clinical stages of psychosis and other disease spectra is unknown. We evaluated whether a model differentiating patients with chronic schizophrenia (ChSZ) from healthy controls (HCs) could be applied to earlier clinical stages such as first-episode psychosis (FEP), ultra-high risk for psychosis (UHR), and autism spectrum disorders (ASDs). STUDY DESIGN: Total 359 T1-weighted MRI scans, including 154 individuals with schizophrenia spectrum (UHR, n = 37; FEP, n = 24; and ChSZ, n = 93), 64 with ASD, and 141 HCs, were obtained using three acquisition protocols. Of these, data regarding ChSZ (n = 75) and HC (n = 101) from two protocols were used to build a classifier (training dataset). The remainder was used to evaluate the classifier (test, independent confirmatory, and independent group datasets). Scanner and protocol effects were diminished using ComBat. STUDY RESULTS: The accuracy of the classifier for the test and independent confirmatory datasets were 75% and 76%, respectively. The bilateral pallidum and inferior frontal gyrus pars triangularis strongly contributed to classifying ChSZ. Schizophrenia spectrum individuals were more likely to be classified as ChSZ compared to ASD (classification rate to ChSZ: UHR, 41%; FEP, 54%; ChSZ, 70%; ASD, 19%; HC, 21%). CONCLUSION: We built a classifier from multiple protocol structural brain images applicable to independent samples from different clinical stages and spectra. The predictive information of the classifier could be useful for applying neuroimaging techniques to clinical differential diagnosis and predicting disease onset earlier.


Assuntos
Transtorno do Espectro Autista , Transtornos Psicóticos , Esquizofrenia , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia
16.
Ann Nucl Med ; 36(5): 460-467, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35174441

RESUMO

OBJECTIVE: Although previous studies have investigated age and gender effects on striatal subregional dopamine transporter (DaT) binding, these studies were mostly based on a conventional regions of interest-based analysis. Here, we investigated age and gender effects on striatal DaT binding at the voxel level, using a multicenter database of [(123)I] N-omega-fluoropropyl-2beta-carbomethoxy-3beta-{4-iodophenyl}nortropane ([(123)I] FP-CIT)-single photon emission computed tomography (SPECT) scans in 256 healthy Japanese adults. METHODS: We used the Southampton method to calculate the specific binding ratios (SBRs) of each subject's striatum and then converted the [123I] FP-CIT SPECT images to quantitative SBRs images. To investigate the effects of age and gender effects on striatal DaT binding, we performed a voxel-based analysis using statistical parametric mapping. Gender differences were also compared between young to middle-aged subjects and elderly subjects (age threshold: 60 years). RESULTS: When all subjects were explored as a group, DaT binding throughout the striatum decreased with advancing age. Among all subjects, the females showed higher DaT binding in the bilateral caudate compared to the males. In the young to middle-aged subjects, the females showed higher DaT binding throughout the striatum (with a slight caudate predominance) versus the males. In the elderly, there were no gender differences in striatal DaT binding. CONCLUSION: Our findings of striatal subregional age- and gender-related differences may provide useful information to construct a more detailed DaT database in healthy Japanese subjects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Radioisótopos do Iodo , Adulto , Idoso , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Radioisótopos do Iodo/metabolismo , Japão , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tropanos
17.
Magn Reson Med Sci ; 21(4): 539-552, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34408115

RESUMO

Schizophrenia is a common severe psychiatric disorder that affects approximately 1% of general population through the life course. Historically, in Kraepelin's time, schizophrenia was a disease unit conceptualized as dementia praecox; however, since then, the disease concept has changed. Recent MRI studies had shown that the neuropathology of the brain in this disorder was characterized by mild progression before and after the onset of the disease, and that the brain alterations were relatively smaller than assumed. Although genetic factors contribute to the brain alterations in schizophrenia, which are thought to be trait differences, other changes include factors that are common in psychiatric diseases. Furthermore, it has been shown that the brain differences specific to schizophrenia were relatively small compared to other changes, such as those caused by brain development, aging, and gender. In addition, compared to the disease and participant factors, machine and imaging protocol differences could affect MRI signals, which should be addressed in multi-site studies. Recent advances in MRI modalities, such as multi-shell diffusion-weighted imaging, magnetic resonance spectroscopy, and multimodal brain imaging analysis, may be candidates to sharpen the characterization of schizophrenia-specific factors and provide new insights. The Brain/MINDS Beyond Human Brain MRI (BMB-HBM) project has been launched considering the differences and noises irrespective of the disease pathologies and includes the future perspectives of MRI studies for various psychiatric and neurological disorders. The sites use restricted MRI machines and harmonized multi-modal protocols, standardized image preprocessing, and traveling subject harmonization. Data sharing to the public will be planned in FY 2024. In the future, we believe that combining a high-quality human MRI dataset with genetic data, randomized controlled trials, and MRI for non-human primates and animal models will enable us to understand schizophrenia, elucidate its neural bases and therapeutic targets, and provide tools for clinical application at bedside.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia
18.
Comput Methods Programs Biomed ; 214: 106585, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34933227

RESUMO

INTRODUCTION: The brain age score has recently been introduced for robust monitoring of brain morphological alterations throughout the lifespan, prediction of mortality risk, and early detection of neurological disorders. METHODS: We assessed the brain age prediction accuracy of the widely used T1-weighted voxel-wise and region-wise metrics (i.e., T1-weighted magnetic resonance imaging [MRI]-wise metrics)) separately and their integration. We assessed 788 healthy individuals (age, 18-94 years) in a training set to build a brain age estimation framework based on different T1-weighted MRI-wise metrics (15 different metrics in total) and then validated each T1-weighted MRI-wise metric in an independent test set comprising 88 healthy individuals. We also assessed the accuracy of each T1-weighted MRI-wise metric in a clinical set of 70 patients with mild cognitive impairment and another of 30 patients with Alzheimer's disease. RESULTS: Integration of gray matter voxel-wise maps and all region-wise metrics achieved the highest brain age prediction accuracy (mean absolute error, 4.63 years). These metrics on their own achieved lower accuracy (mean absolute error, 4.97 years and 5.75 years, respectively). DISCUSSION: For tracing brain atrophy levels in neurological disorders at the clinical level, integration of voxel-wise and region-wise metrics may contribute to a more sensitive brain age framework than when these metrics are used on their own.


Assuntos
Doença de Alzheimer , Benchmarking , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/diagnóstico por imagem , Pré-Escolar , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem
20.
Epilepsy Res ; 177: 106766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534926

RESUMO

OBJECTIVE: Previous studies have demonstrated structural brain network abnormalities in patients with temporal lobe epilepsy (TLE) using cortical thickness or gray matter (GM) volume. However, no studies have applied single-subject GM network analysis. Here, we first applied an analysis of similarity-based single-subject GM networks to individual patients with TLE. MATERIALS AND METHODS: We recruited 51 patients with TLE and unilateral hippocampal sclerosis (22 left, 29 right TLE) and 51 age- and gender- matched healthy controls. Single-subject structural networks were extracted from three-dimensional T1-weighted magnetic resonance images for each subject. In this method, nodes were defined as small cortical regions and edges representing connecting regions that have high statistical similarity. The constructed graphs were analyzed using the graph theoretical approach. The following global and local network properties were calculated: betweenness centrality, clustering coefficient, and characteristic path length. In addition, small world properties (normalized path length λ, normalized clustering coefficient γ, and small-world network value σ) were obtained and compared with those for the controls. RESULTS: Although the small-world configurations were retained, impaired global clustering coefficient was observed in left and right TLE. At a regional level, patients with left TLE showed a widespread decrease of the clustering coefficient beyond the ipsilateral temporal lobe and a decreased characteristic path length in the ipsilateral temporal pole. On the other hand, patients with right TLE showed a localized decrease of the clustering coefficient in the ipsilateral temporal lobe. CONCLUSIONS: Our findings suggest that global and local network properties disrupted and moved toward randomized networks in TLE patients in comparison to controls. This network alteration was more extensive in left TLE than in right TLE patients. Single-subject GM networks may contribute to a better understanding of the pathophysiology of TLE.


Assuntos
Epilepsia do Lobo Temporal , Substância Cinzenta/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose/patologia , Lobo Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...