Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(28): 19935-19944, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903674

RESUMO

We investigated the viability and influence of NH4OH post-synthetic treatment on the pore characteristics of geopolymers. Geopolymers are a class of materials with amorphous aluminosilicate three-dimensional frameworks, regarded as amorphous analogues of zeolites. Similar to zeolites, when geopolymers are used in catalysis or adsorption applications, post-synthetic treatments such as ion exchange with NH4 + salts (e.g., NH4Cl and NH4NO3) and desilication (using strong bases such as NaOH) are necessary to introduce active sites and modify their pore structure, respectively. Recently, it has been shown that treatment with NH4OH combines these two steps, in which acidic sites are introduced and the pore structures of zeolites are modified simultaneously. Considering the increasing interest in geopolymers in catalysis and adsorption applications, understanding the impact of such treatment on the structure of geopolymers is needed. Our diffuse reflectance infrared Fourier-transform spectra show that NH4 + exchanges Na+ in the geopolymer, and laser diffraction with scanning electron microscopy images show that the particle size of the powdered geopolymer decreases after NH4OH treatment. N2 sorption isotherms and 129Xe and 1H NMR measurements revealed information about the changes in pore structures: micropores were larger than mesopores and inborn mesopores increased in diameter, thereby reducing the surface area to volume ratio. However, pore accessibility and pore connectivity were not altered by NH4OH treatment. Since solid-state NMR and X-ray fluorescence revealed desilication, these changes in particle size and pore characteristics are considered to be due to desilication caused by NH4OH treatment.

2.
J Phys Chem Lett ; 15(20): 5323-5330, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38724016

RESUMO

We exploited 129Xe NMR to investigate xenon gas uptake and dynamics in a porous liquid formed by dissolving porous organic cages in a cavity-excluded solvent. Quantitative 129Xe NMR shows that when the amount of xenon added to the sample is lower than the amount of cages present (subsaturation), the porous liquid absorbs almost all xenon atoms from the gas phase, with 30% of the cages occupied with a Xe atom. A simple two-site exchange model enables an estimate of the chemical shift of 129Xe in the cages, which is in good agreement with the value provided by first-principles modeling. T2 relaxation times allow the determination of the exchange rate of Xe between the solvent and cage sites as well as the activation energies of the exchange. The 129Xe NMR analysis also enables determination of the free energy of confinement, and it shows that Xe binding is predominantly enthalpy-driven.

3.
Phys Chem Chem Phys ; 26(4): 3441-3450, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205817

RESUMO

Nuclear magnetic resonance cryoporometry (NMRC) and differential scanning calorimetry thermoporometry (DSC-TPM) are powerful methods for measuring mesopore size distributions. The methods are based on the fact that, according to the Gibbs-Thomson equation, the melting point depression of a liquid confined to a pore is inversely proportional to the pore size. However, aqueous salt solutions, which inherently exist in a broad range of biological porous materials as well as technological applications such as electrolytes, do not melt at a single temperature. This causes artefacts in the pore size distributions extracted by traditional Gibbs-Thomson analysis of NMRC and DSC-TPM data. Bulk aqueous NaCl solutions are known to have a broad distribution of melting points between the eutectic and pure water phase transition points (252-273 K). Here, we hypothesize that, when aqueous NaCl solution (saline) is confined to a small pore, the whole melting point distribution is shifted toward lower temperatures by the value predicted by the Gibbs-Thomson equation. We show that this so-called shifted phase transition distribution (SIDI) approach removes the artefacts arising from the traditional Gibbs-Thomson analysis and gives correct pore size distributions for saline saturated mesoporous silica gel and controlled pore materials analyzed by NMR cryoporometry. Furthermore, we demonstrate that the method can be used for determining pore sizes in collagen-chondroitin sulphate hydrogels resembling the composition of the extracellular matrix of articular cartilage. It is straightforward to apply the SIDI analysis for DSC-TMP data as well.

4.
Magn Reson Chem ; 62(4): 252-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37344254

RESUMO

Temperature-dependent experiments are a rapidly growing area of interest for low-field NMR. In this work, we present a new device for wide-range temperature control for single-sided NMR instruments. The presented device, called CAT, is simple to build, inexpensive, and easy to modify to accommodate different samples. We present the capabilities of the device using a freezing temperature study of acetic acid/water mixtures. Additionally, we present the stability of the device over long measurement times. We believe that by introducing such a device with an open-source design, we allow researchers to use it in a wide range of applications and to fully incorporate variable-temperature studies in the world of single-sided instruments.

5.
Phys Chem Chem Phys ; 25(18): 13164-13169, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129427

RESUMO

T 1ρ is an NMR relaxation mode that is sensitive to low frequency molecular motions, making it an especially valuable tool in biomolecular research. Here, we introduce a new method, SPICY, for measuring T1ρ relaxation times. In contrast to conventional T1ρ experiments, in which the sequence is repeated many times to determine the T1ρ time, the SPICY sequence allows determination of T1ρ within a single scan, shortening the experiment time remarkably. We demonstrate the method using 1H T1ρ relaxation dispersion experiments. Additionally, we combine the sequence with spatial encoding to produce 1D images in a single scan. We show that T1ρ relaxation times obtained using the single scan approach are in good agreement with those obtained using the traditional experiments.

6.
Angew Chem Int Ed Engl ; 61(28): e202203957, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499690

RESUMO

Molecular exchange processes are ubiquitous in nature. Here, we introduce a method to analyze exchange processes by using low-cost, portable, single-sided NMR instruments. The inherent magnetic field inhomogeneity of the single-sided instruments is exploited to achieve diffusion contrast of exchange sites and spatial encoding of 2D data. This so-called ultrafast diffusion exchange spectroscopy method shortens the experiment time by two to four orders of magnitude. Furthermore, because full 2D data are measured in a single scan (in a fraction of a second), the sensitivity of the experiment can be improved by several orders of magnitude using so-called nuclear spin hyperpolarization methods (in this case, dissolution dynamic nuclear polarization). As the first demonstration of the feasibility of the method in various applications, we show that the method enables quantification of intra- and extracellular exchange of water in a yeast cell suspension.


Assuntos
Imageamento por Ressonância Magnética , Água , Difusão , Espectroscopia de Ressonância Magnética/métodos , Água/química
7.
Cartilage ; 13(2_suppl): 1637S-1645S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32954793

RESUMO

OBJECTIVE: Intra-articular drug delivery holds great promise for the treatment of joint diseases such as osteoarthritis. The objective of this study was to evaluate the TAT peptide transduction domain (TAT-PTD) as a potential intra-articular drug delivery technology for synovial joints. DESIGN: Experiments examined the ability of TAT conjugates to associate with primary chondrocytes and alter cellular function both in vitro and in vivo. Further experiments examined the ability of the TAT-PTD to bind to human osteoarthritic cartilage. RESULTS: The results show that the TAT-PTD associates with chondrocytes, is capable of delivering siRNA for chondrocyte gene knockdown, and that the recombinant enzyme TAT-Cre is capable of inducing in vivo genetic recombination within the knee joint in a reporter mouse model. Last, binding studies show that osteoarthritic cartilage preferentially uptakes the TAT-PTD from solution. CONCLUSIONS: The results suggest that the TAT-PTD is a promising delivery strategy for intra-articular therapeutics.


Assuntos
Produtos do Gene tat , Osteoartrite , Animais , Cartilagem/metabolismo , Condrócitos/metabolismo , Produtos do Gene tat/química , Produtos do Gene tat/metabolismo , Camundongos , Osteoartrite/metabolismo , Tecnologia
8.
Nat Commun ; 11(1): 3251, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591527

RESUMO

The exchange of molecules between different physical or chemical environments due to diffusion or chemical transformations has a crucial role in a plethora of fundamental processes such as breathing, protein folding, chemical reactions and catalysis. Here, we introduce a method for a single-scan, ultrafast NMR analysis of molecular exchange based on the diffusion coefficient contrast. The method shortens the experiment time by one to four orders of magnitude. Consequently, it opens the way for high sensitivity quantification of important transient physical and chemical exchange processes such as in cellular metabolism. As a proof of principle, we demonstrate that the method reveals the structure of aggregates formed by surfactants relevant to aerosol research.

10.
J Magn Reson ; 287: 82-90, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29306110

RESUMO

Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Animais , Difusão , Imagem de Difusão por Ressonância Magnética , Suínos
11.
PLoS One ; 10(7): e0130564, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26151638

RESUMO

Mouse models are common tools for examining post-traumatic osteoarthritis (OA), which involves cartilage deterioration following injury or stress. One challenge to current mouse models is longitudinal monitoring of the cartilage deterioration in vivo in the same mouse during an experiment. The objective of this study was to assess the feasibility for using a novel transgenic mouse for non-invasive quantification of cartilage. Chondrocytes are defined by expression of the matrix protein aggrecan, and we developed a novel mouse containing a reporter luciferase cassette under the inducible control of the endogenous aggrecan promoter. We generated these mice by crossing a Cre-dependent luciferase reporter allele with an aggrecan creERT2 knockin allele. The advantage of this design is that the targeted knockin retains the intact endogenous aggrecan locus and expresses the tamoxifen-inducible CreERT2 protein from a second IRES-driven open reading frame. These mice display bioluminescence in the joints, tail, and trachea, consistent with patterns of aggrecan expression. To evaluate this mouse as a technology for non-invasive quantification of cartilage loss, we characterized the relationship between loss of bioluminescence and loss of cartilage after induction with (i) ex vivo collagenase digestion, (ii) an in vivo OA model utilizing treadmill running, and (iii) age. Ex vivo experiments revealed that collagenase digestion of the femur reduced both luciferase signal intensity and pixel area, demonstrating a link between cartilage degradation and bioluminescence. In an in vivo model of experimental OA, we found decreased bioluminescent signal and pixel area, which correlated with pathological disease. We detected a decrease in both bioluminescent signal intensity and area with natural aging from 2 to 13 months of age. These results indicate that the bioluminescent signal from this mouse may be used as a non-invasive quantitative measure of cartilage. Future studies may use this reporter mouse to advance basic and preclinical studies of murine experimental OA with applications in synovial joint biology, disease pathogenesis, and drug delivery.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Luciferases/metabolismo , Osteoartrite/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Conservadores da Densidade Óssea/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Estudos de Viabilidade , Feminino , Expressão Gênica/efeitos dos fármacos , Luciferases/genética , Medições Luminescentes/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoartrite/genética , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...