Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 1: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271900

RESUMO

Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late twentieth century. However, isolated outbreaks have occurred in recent years. Here we investigate whether a lack of resistance in modern European varieties, increased presence of its alternate host barberry and changes in climatic conditions could be facilitating its resurgence. We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years, with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25 years also suggest increasingly conducive conditions for infection. Furthermore, we document the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that wheat stem rust does occur in the UK and, when climatic conditions are conducive, could severely harm wheat and barley production.

2.
Plant Cell Physiol ; 59(8): 1592-1607, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931201

RESUMO

In a chemical screen we identified thaxtomin A (TXA), a phytotoxin from plant pathogenic Streptomyces scabies, as a selective and potent activator of FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) expression in Arabidopsis (Arabidopsis thaliana). TXA induction of FMO1 was unrelated to the production of reactive oxygen species (ROS), plant cell death or its known inhibition of cellulose synthesis. TXA-stimulated FMO1 expression was strictly dependent on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) but independent of salicylic acid (SA) synthesis via ISOCHORISMATE SYNTHASE1 (ICS1). TXA induced the expression of several EDS1/PAD4-regulated genes, including EDS1, PAD4, SENESCENCE ASSOCIATED GENE101 (SAG101), ICS1, AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and PATHOGENESIS-RELATED PROTEIN1 (PR1), and accumulation of SA. Notably, enhanced ALD1 expression did not result in accumulation of the product pipecolic acid (PIP), which promotes FMO1 expression during biologically induced systemic acquired resistance. TXA treatment preferentially stimulated expression of PAD4 compared with EDS1, which was mirrored by PAD4 protein accumulation, suggesting that TXA leads to increased PAD4 availability to form EDS1-PAD4 signaling complexes. Also, TXA treatment of Arabidopsis plants led to enhanced disease resistance to bacterial and oomycete infection, which was dependent on EDS1 and PAD4, as well as on FMO1 and ICS1. Collectively, the data identify TXA as a potentially useful chemical tool to conditionally activate and interrogate EDS1- and PAD4-controlled pathways in plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/farmacologia , Oxigenases/metabolismo , Ácidos Pipecólicos/metabolismo , Piperazinas/farmacologia , Doenças das Plantas , Transdução de Sinais/fisiologia , Transaminases/metabolismo
3.
Plant Cell Physiol ; 55(10): 1813-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25231962

RESUMO

Rapid transient elevation of cytoplasmic calcium (Ca(2+)) levels in plant cells is an early signaling event triggered by many environmental cues including abiotic and biotic stresses. Cellular Ca(2+) levels and their alterations can be monitored by genetically encoded reporter systems such as the bioluminescent protein, aequorin. Employment of proteinaceous Ca(2+) sensors is usually performed in transgenic lines that constitutively express the reporter construct. Such settings limit the usage of these Ca(2+) biosensors to particular reporter variants and plant genetic backgrounds, which can be a severe constraint in genetic pathway analysis. Here we systematically explored the potential of Arabidopsis thaliana leaf mesophyll protoplasts, either derived from a transgenic apoaequorin-expressing line or transfected with apoaequorin reporter constructs, as a complementary biological resource to monitor cytoplasmic changes of Ca(2+) levels in response to various biotic stress elicitors. We tested a range of endogenous and pathogen-derived elicitors in seedlings and protoplasts of the corresponding apoaequorin-expressing reporter line. We found that the protoplast system largely reflects the Ca(2+) signatures seen in intact transgenic seedlings. Results of inhibitor experiments including the calculation of IC50 values indicated that the protoplast system is also suitable for pharmacological studies. Moreover, analyses of Ca(2+)signatures in mutant backgrounds, genetic complementation of the mutant phenotypes and expression of sensor variants targeted to different subcellular localizations can be readily performed. Thus, in addition to the prevalent use of seedlings, the leaf mesophyll protoplast setup represents a versatile and convenient tool for the analysis of Ca(2+) signaling pathways in plant cells.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Protoplastos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Transporte de Íons , Folhas de Planta/metabolismo
4.
Plant Signal Behav ; 7(11): 1373-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22918498

RESUMO

The generation of intracellular microbe-associated molecular pattern (MAMP)-triggered Ca²âº transients was recently demonstrated to involve ionotropic Glutamate Receptor (iGluR)-like channels in Arabidopsis and tobacco. Here we elaborate on our previous findings and refine our insights in the putative agonist binding profile and potential mode of desensitization of MAMP-activated plant iGluRs. Based on results from pharmacological inhibition and desensitization experiments, we propose that plant iGluR complexes responsible for the MAMP-triggered Ca²âº signature have a binding profile that combines the specificities of mammalian NMDA-and non-NMDA types of iGluRs, possibly reflecting the evolutionary history of plant and animal iGluRs. We further hypothesize that, analogous to the mammalian NMDA-NR1 receptor, desensitization of plant iGluR-like channels might involve binding of the ubiquitous Ca²âº sensor calmodulin to a cytoplasmic C-terminal domain.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo
5.
Biochem J ; 440(3): 355-65, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21848515

RESUMO

Binding of specific microbial epitopes [MAMPs (microbe-associated molecular patterns)] to PRRs (pattern recognition receptors) and subsequent receptor kinase activation are key steps in plant innate immunity. One of the earliest detectable events after MAMP perception is a rapid and transient rise in cytosolic Ca2+ levels. In plants, knowledge about the signalling events leading to Ca2+ influx and on the molecular identity of the channels involved is scarce. We used a transgenic Arabidopsis thaliana line stably expressing the luminescent aequorin Ca2+ biosensor to monitor pharmacological interference with Ca2+ signatures following treatment with the bacterial peptide MAMPs flg22 and elf18, and the fungal carbohydrate MAMP chitin. Using a comprehensive set of compounds known to impede Ca2+-transport processes in plants and animals we found strong evidence for a prominent role of amino acid-controlled Ca2+ fluxes, probably through iGluR (ionotropic glutamate receptor)-like channels. Interference with amino acid-mediated Ca2+ fluxes modulates MAMP-triggered MAPK (mitogen-activated protein kinase) activity and affects MAMP-induced accumulation of defence gene transcripts. We conclude that the initiation of innate immune responses upon flg22, elf18 and chitin recognition involves apoplastic Ca2+ influx via iGluR-like channels.


Assuntos
Arabidopsis/metabolismo , Plantas Geneticamente Modificadas , Receptores Ionotrópicos de Glutamato/metabolismo , Plântula/metabolismo , Equorina/química , Aloxano/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Quitina/farmacologia , Didesoxiadenosina/farmacologia , Diltiazem/farmacologia , Ativação Enzimática , Estrenos/farmacologia , Regulação da Expressão Gênica de Plantas , Ácido Cinurênico/farmacologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neomicina/farmacologia , Nifedipino/farmacologia , Pirrolidinonas/farmacologia , Receptores de Reconhecimento de Padrão , Plântula/efeitos dos fármacos , Plântula/genética , Transcrição Gênica , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Verapamil/farmacologia
6.
BMC Genomics ; 10: 452, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19775472

RESUMO

BACKGROUND: There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. RESULTS: In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens) had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. CONCLUSION: By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs described in woody plant species.


Assuntos
Eucalyptus/genética , Polimorfismo de Nucleotídeo Único , Vias Biossintéticas/genética , Hibridização Genômica Comparativa , DNA de Plantas/genética , Éxons , Flavonoides/biossíntese , Íntrons , Análise de Sequência de DNA , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...