Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7788, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552495

RESUMO

Practical applications of heat transport control with artificial metamaterials will heavily depend on the realization of thermal diodes/rectifiers, in which thermal conductivity depends on the heat flux direction. Whereas various macroscale implementations have been made experimentally, nanoscales realizations remain challenging and efficient rectification still requires a better fundamental understanding of heat carriers' transport and nonlinear mechanisms. Here, we propose an experimental realization of a thermal rectifier based on two leads with asymmetric mass gradients separated by a ballistic spacer, as proposed in a recent numerical investigation, and measure its thermal properties electrically with the microbridge technique. We use a Si[Formula: see text]N[Formula: see text] nanobeam on which an asymmetric mass gradient has been engineered and demonstrate that in its current form, this structure does not allow for thermal rectification. We explain this by a combination of too weak asymmetry and non-linearities. Our experimental observations provide important information towards fabricating rigorous thermal rectifiers in the ballistic phonon transport regime, which are expected to open new possibilities for applications in thermal management and quantum thermal devices.

2.
Nanomaterials (Basel) ; 10(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252435

RESUMO

In organic electronics, thermal management is a challenge, as most organic materials conduct heat poorly. As these devices become smaller, thermal transport is increasingly limited by organic-inorganic interfaces, for example that between a metal and a polymer. However, the mechanisms of heat transport at these interfaces are not well understood. In this work, we compare three types of metal-polymer interfaces. Polymethyl methacrylate (PMMA) films of different thicknesses (1-15 nm) were spin-coated on silicon substrates and covered with an 80 nm gold film either directly, or over an interface layer of 2 nm of an adhesion promoting metal-either titanium or nickel. We use the frequency-domain thermoreflectance (FDTR) technique to measure the effective thermal conductivity of the polymer film and then extract the metal-polymer thermal boundary conductance (TBC) with a thermal resistance circuit model. We found that the titanium layer increased the TBC by a factor of 2, from 59 × 106 W·m-2·K-1 to 115 × 106 W·m-2·K-1, while the nickel layer increased TBC to 139 × 106 W·m-2·K-1. These results shed light on possible strategies to improve heat transport in organic electronic systems.

3.
Sci Rep ; 8(1): 4452, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535335

RESUMO

Semiconductor nanowires are potential building blocks for future thermoelectrics because of their low thermal conductivity. Recent theoretical works suggest that thermal conductivity of nanowires can be further reduced by additional constrictions, pillars or wings. Here, we experimentally study heat conduction in silicon nanowires with periodic wings, called fishbone nanowires. We find that like in pristine nanowires, the nanowire cross-section controls thermal conductivity of fishbone nanowires. However, the periodic wings further reduce the thermal conductivity. Whereas an increase in the wing width only slightly affects the thermal conductivity, an increase in the wing depth clearly reduces thermal conductivity, and this reduction is stronger in the structures with narrower nanowires. Our experimental data is supported by the Callaway-Holland model, finite element modelling and phonon transport simulations.

4.
Sci Adv ; 3(8): e1700027, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798956

RESUMO

The world communicates to our senses of vision, hearing, and touch in the language of waves, because light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively investigated over the past century and is now widely used in modern technology. However, the wave nature of heat has been the subject of mostly theoretical studies because its experimental demonstration, let alone practical use, remains challenging due to its extremely short wavelengths. We show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding expands the methodology of heat transfer engineering to the wave nature of heat.

5.
Nat Commun ; 8: 15505, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28516909

RESUMO

Unlike classical heat diffusion at macroscale, nanoscale heat conduction can occur without energy dissipation because phonons can ballistically travel in straight lines for hundreds of nanometres. Nevertheless, despite recent experimental evidence of such ballistic phonon transport, control over its directionality, and thus its practical use, remains a challenge, as the directions of individual phonons are chaotic. Here, we show a method to control the directionality of ballistic phonon transport using silicon membranes with arrays of holes. First, we demonstrate that the arrays of holes form fluxes of phonons oriented in the same direction. Next, we use these nanostructures as directional sources of ballistic phonons and couple the emitted phonons into nanowires. Finally, we introduce thermal lens nanostructures, in which the emitted phonons converge at the focal point, thus focusing heat into a spot of a few hundred nanometres. These results motivate the concept of ray-like heat manipulations at the nanoscale.

6.
Sci Rep ; 7: 41794, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28150724

RESUMO

We have experimentally investigated the impact of dimensions and temperature on the thermal conductivity of silicon nanowires fabricated using a top-down approach. Both the width and temperature dependences of thermal conductivity agree with those in the existing literature. The length dependence of thermal conductivity exhibits a transition from semi-ballistic thermal phonon transport at 4 K to fully diffusive transport at room temperature. We additionally calculated the phonon dispersion in these structures in the framework of the theory of elasticity and showed that the thermal conductance increases with width. This agrees with our experimental observations and supports the pertinence of using the modified phonon dispersion at low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...