Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 55(4): 1587-94, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26828856

RESUMO

We report here the synthesis of new N→Sn-coordinated stannaoxidoborates H[LSnB4O6R4] {L = [2,6-(Me2NCH2)C6H3](-) and R = Ph (6), 4-Br-Ph (7), 3,5-(CF3)2-Ph (8), and 4-CHO-Ph (9)} containing a nonsymmetric SnB4O6 unit. Compounds 6-9 represent new derivatives of the pentaborates [B5O6R4](-) in which the central boron is substituted by a tin atom. Compounds 6-9 were characterized by means of elemental analysis, electrospray ionization mass spectrometry, and NMR spectroscopy and in the case of 6-8 also by single-crystal X-ray diffraction analysis. The structures of N→Sn-coordinated stannaoxidoborates 6-8 consist of a spirobicyclic arrangement, with two six-membered SnB2O3 rings at the tin atom providing the new stannaoxidoborate [LSnB4O6R4](-) motif, which is compensated for by the proton atom coordinated to the Me2N group of the ligand L. The linear and thermal properties of 6-9 were studied with the help of electronic absorption spectra and differential scanning calorimetry. In addition, the presence of the nonsymmetric stannaoxidoborate SnB4O6 unit in 6, 7, and 9 prompted us to investigate their second-order nonlinear-optical properties.

2.
Dalton Trans ; 43(19): 7096-108, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24671260

RESUMO

The synthesis and structure of stiba-, stanna- and bismaheteroboroxines of a general formula L(E)M[(OBR)2O] supported by a N,C,N-chelating ligand L [where L = C6H3-2,6-(CH2NMe2)2, M, E = Sb, lone pair or Sn, Ph or Bi, lone pair] is reported. The target compounds are prepared by straightforward one-step reactions between oxides (LMO)2 (M = Sb or Bi) or organotin(iv) carbonate L(Ph)Sn(CO3) with four or two molar equivalents of corresponding organoboronic acid. All compounds were characterized with the help of elemental analysis, multinuclear NMR spectroscopy and on several occasions the molecular structure was determined using single-crystal X-ray diffraction analysis. The influence of both the substitution of the parent organoboronic acid and the central atom used on the feasibility of the condensation reaction was addressed. Furthermore, several heteroboroxines containing nitrogen donor functionality (i.e. NH2, NMe2, CN or 4-pyridyl) included in the boronic acid residue were synthesized and characterized with the aim to prepare boroxine-based covalent frameworks (through intermolecular N→B interactions) containing metal atoms in their structures. Although no such intermolecular bonding was detected in solution of these compounds, it was shown that the organotin(iv) heteroboroxine substituted by 4-pyridyl group forms an infinite polymeric chains via N→B interactions in the solid state. This polymer collapsed back to monomeric units upon dissolution.

3.
Dalton Trans ; 42(46): 16403-11, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24068043

RESUMO

The reaction of an N,C,N-intramolecularly coordinated tin(IV) carbonate LSn(Ph)(CO3) (1) and antimony(III) and bismuth(III) oxides (LMO)2 (where M = Sb (2), Bi (3) and L = C6H3-2,6-(CH2NMe2)2) with (HO)SiPh2(O)SiPh2(OH) in 1 : 1 (in the case of 1) or 1 : 2 molar ratio (in the cases of 2 and 3) gave the metallasiloxanes cyclo-LSn(Ph)(OSiPh2)2O (4) and cyclo-LM(OSiPh2)2O (where M = Sb (6) and Bi (7)) containing six-membered MSi2O3 rings. Alternatively, the compounds 4, 6 and 7 can be also prepared reacting Ph2Si(OH)2 and compounds 1, 2 and 3, respectively, in the molar ratio of either 2 : 1 (for 4) or 4 : 1 (for 6 and 7). The reaction of Ph2Si(OH)2 with 1 in 1 : 1 molar ratio gave cyclo-Ph2Si(OSnL(Ph)O)2SiPh2 (5) containing an eight-membered Sn2Si2O4 stannasiloxane ring. The analogous eight-membered stibasiloxane derivative cyclo-Ph2Si(OSbLO)2SiPh2 (8) was obtained as well, while attempts to synthesize the bismuth analogue failed. Compounds 1-3 react with the siloxane cyclo-(Me2SiO)3 providing either eight-membered metallasiloxanes cyclo-LSn(Ph)(OSiMe2O)2SiMe2 (9) and cyclo-LSb(OSiMe2O)2SiMe2 (10) or the six-membered bismutasiloxane cyclo-LBi(OSiMe2)2O (11). All compounds were characterized with the help of elemental analysis, (1)H, (13)C, (29)Si and (119)Sn NMR spectroscopy, and single crystal X-ray diffraction analyses (except 9 and 10).

4.
Inorg Chem ; 52(3): 1424-31, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23327544

RESUMO

Reaction of organoantimony and organobismuth oxides (LSbO)(2) and (LBiO)(2) (where L is [2,6-bis(dimethylamino)methyl]phenyl) with four equivalents of the organoboronic acids gave new heteroboroxines LM[(OBR)(2)O] 1a-2c (for M = Sb: R = Ph (1a), 4-CF(3)C(6)H(4) (1b), ferrocenyl (1c); for M = Bi: R = Ph (2a), 4-CF(3)C(6)H(4) (2b), and ferrocenyl (2c)). Analogously, reaction between organotin carbonate L(Ph)Sn(CO(3)) and two equivalents of organoboronic acids yielded compounds L(Ph)Sn[(OBR)(2)O] (where R = Ph (3a), 4-CF(3)C(6)H(4) (3b), and ferrocenyl (3c)). All compounds were characterized by elemental analysis and NMR spectroscopy. Their structure was described both in solution (NMR studies) and in the solid state (X-ray diffraction analyses 1a, 1c, 2b, 3b, and 3c). All compounds contain a central MB(2)O(3) core (M = Sb, Bi, Sn), and the bonding situation within these rings and their potential aromaticity was investigated by the help of computational methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...