Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772909

RESUMO

Neutrophils are the first leukocytes to be recruited to sites of inflammation in response to chemotactic factors released by activated macrophages and pulmonary epithelial and endothelial cells in bacterial pneumonia, a common cause of acute respiratory distress syndrome (ARDS). Although neutrophilic inflammation facilitates the elimination of pathogens, neutrophils also may cause bystander tissue injury. Even though neutrophils in alveolar spaces is a key feature of acute lung injury and ARDS especially from pneumonia, their contribution to the pathogenesis of lung injury is uncertain. The goal of this study was to elucidate the role of neutrophils in a clinically relevant model of bacterial pneumonia. We investigated the effect of reducing neutrophils in a mouse model of pneumococcal pneumonia treated with antibiotics. Neutrophils were reduced with anti-Ly6G monoclonal antibody 24 hours before and immediately preceding infection. Mice were inoculated intranasally with Streptococcus pneumoniae and received ceftriaxone 12 hours after bacterial inoculation. Neutrophil reduction in mice treated with ceftriaxone attenuated hypoxemia, alveolar permeability, epithelial injury, pulmonary edema, and inflammatory biomarker release induced by bacterial pneumonia, even though bacterial loads in the distal air spaces of the lung were modestly increased as compared to antibiotic treatment alone. Thus, when appropriate antibiotics are administered, lung injury in the early phase of bacterial pneumonia is mediated in part by neutrophils. In the early phase of bacterial pneumonia, neutrophils contribute to the severity of lung injury, although they also participate in host defense.

2.
Crit Care ; 28(1): 185, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807178

RESUMO

BACKGROUND: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The primary objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in a mouse model. A secondary objective was to identify shared transcriptomic features of pneumococcal pneumonia and steroid treatment in the mouse model and clinical samples. METHODS: We carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. We also studied lower respiratory tract gene expression from a cohort of 15 mechanically ventilated patients (10 with Streptococcus pneumoniae and 5 controls) to compare with the transcriptional studies in the mice. RESULTS: In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Transcriptomic analyses identified effects of steroid therapy in mice that were also observed in the clinical samples. CONCLUSIONS: In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The transcriptional studies in patients suggest that the mouse model replicates some of the features of pneumonia in patients with Streptococcus pneumoniae and steroid treatment. Overall, these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.


Assuntos
Corticosteroides , Modelos Animais de Doenças , Pneumonia Pneumocócica , Animais , Pneumonia Pneumocócica/tratamento farmacológico , Camundongos , Corticosteroides/uso terapêutico , Corticosteroides/farmacologia , Humanos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Feminino , Masculino , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/patogenicidade
3.
Res Sq ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38464245

RESUMO

Background: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in an observational cohort of mechanically ventilated patients and in a mouse model of bacterial pneumonia with Streptococcus pneumoniae. Methods: We studied gene expression with lower respiratory tract transcriptomes from a cohort of mechanically ventilated patients and in mice. We also carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. Results: Transcriptomic analysis identified pleiotropic effects of steroid therapy on the lower respiratory tract in critically ill patients with pneumococcal pneumonia, findings that were reproducible in mice. In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Conclusions: The gene expression studies in patients and in the mice support the clinical relevance of the mouse studies, which replicate several features of pneumococcal pneumonia and steroid therapy in humans. In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The results from these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.

4.
Front Immunol ; 14: 1076772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999019

RESUMO

E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1ß, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Pneumonia Viral , Camundongos , Animais , Humanos , Nicotina/efeitos adversos , Interleucina-17/farmacologia , Aerossóis e Gotículas Respiratórios , Pulmão , Expressão Gênica
5.
Mol Cell ; 83(6): 942-960.e9, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36893757

RESUMO

Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.


Assuntos
Hiperóxia , Doenças Mitocondriais , Animais , Humanos , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Oxigênio/metabolismo
6.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36827975

RESUMO

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2 , Organoides , Tetraspaninas/genética
7.
bioRxiv ; 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35982664

RESUMO

As SARS-CoV-2 continues to spread worldwide, tractable primary airway cell models that accurately recapitulate the cell-intrinsic response to arising viral variants are needed. Here we describe an adult stem cell-derived human airway organoid model overexpressing the ACE2 receptor that supports robust viral replication while maintaining 3D architecture and cellular diversity of the airway epithelium. ACE2-OE organoids were infected with SARS-CoV-2 variants and subjected to single-cell RNA-sequencing. NF-κB inhibitor alpha was consistently upregulated in infected epithelial cells, and its mRNA expression positively correlated with infection levels. Confocal microscopy showed more IκBα expression in infected than bystander cells, but found concurrent nuclear translocation of NF-κB that IκBα usually prevents. Overexpressing a nondegradable IκBα mutant reduced NF-κB translocation and increased viral infection. These data demonstrate the functionality of ACE2-OE organoids in SARS-CoV-2 research and identify an incomplete NF-κB feedback loop as a rheostat of viral infection that may promote inflammation and severe disease.

8.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L152-L164, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670478

RESUMO

Electronic cigarettes (e-cigarettes) are designed to simulate combustible cigarette smoking and to aid in smoking cessation. Although the number of e-cigarette users has been increasing, the potential health impacts and biological effects of e-cigarettes are still not fully understood. Previous research has focused on the biological effects of e-cigarettes on lung cancer cell lines and distal airway epithelial cells; however, there have been few published studies on the effect of e-cigarettes on primary lung alveolar epithelial cells. The primary purpose of this study was to investigate the direct effect of e-cigarette aerosol on primary human lung alveolar epithelial type 2 (AT2) cells, both alone and in the presence of viral infection. The Melo-3 atomizer caused direct AT2 cell toxicity, whereas the more popular Juul pod's aerosol did not have a detectable cytotoxic effect on AT2 cells. Juul nicotine aerosol also did not increase short-term susceptibility to viral infection. However, 3 days of exposure upregulated genes central to the generation of reactive oxygen species, lipid peroxidation, and carcinogen metabolism and downregulated key innate immune system genes related to cytokine and chemokine signaling. These findings have implications for the potentially injurious impact of long-term use of popular low-power e-cigarette pods on the human alveolar epithelium. Gene expression data might be an important endpoint for evaluating the potential harmful effects of vaping devices that do not cause overt toxicity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Células Epiteliais Alveolares , Humanos , Nicotina/efeitos adversos , Aerossóis e Gotículas Respiratórios , Vaping/efeitos adversos
9.
Nature ; 607(7918): 351-355, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584773

RESUMO

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


Assuntos
COVID-19 , Proteção Cruzada , SARS-CoV-2 , Vacinação , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteção Cruzada/imunologia , Citocinas , Humanos , Camundongos , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Vacinação/estatística & dados numéricos
10.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L771-L783, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318859

RESUMO

Although vitamin E acetate (VEA) is suspected to play a causal role in the development of electronic-cigarette, or vaping, product use-associated lung injury (EVALI), the underlying biological mechanisms of pulmonary injury are yet to be determined. In addition, no study has replicated the systemic inflammation observed in humans in a murine EVALI model, nor investigated potential additive toxicity of viral infection in the setting of exposure to vaping products. To identify the mechanisms driving VEA-related lung injury and test the hypothesis that viral infection causes additive lung injury in the presence of aerosolized VEA, we exposed mice to aerosolized VEA for extended times, followed by influenza infection in some experiments. We used mass spectrometry to evaluate the composition of aerosolized VEA condensate and the VEA deposition in murine or human alveolar macrophages. Extended vaping for 28 days versus 15 days did not worsen lung injury but caused systemic inflammation in the murine EVALI model. Vaping plus influenza increased lung water compared with virus alone. Murine alveolar macrophages exposed to vaped VEA hydrolyzed the VEA to vitamin E with evidence of oxidative stress in the alveolar space and systemic circulation. Aerosolized VEA also induced cell death and chemokine release and reduced efferocytotic function in human alveolar macrophages in vitro. These findings provide new insights into the biological mechanisms of VEA toxicity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Influenza Humana , Lesão Pulmonar , Vaping , Acetatos/química , Animais , Humanos , Inflamação/induzido quimicamente , Lesão Pulmonar/induzido quimicamente , Macrófagos Alveolares/metabolismo , Camundongos , Estresse Oxidativo , Vaping/efeitos adversos , Vitamina E/farmacologia
11.
Trends Pharmacol Sci ; 43(9): 703-705, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282893

RESUMO

The need for new coronavirus disease 2019 (COVID-19) therapeutic strategies continues, especially as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerge. Zhang and colleagues elegantly engineered a mutant angiotensin-converting enzyme 2 (ACE2) that competitively binds SARS-CoV-2 spike protein, reduces viral uptake by human lung cells, and ameliorates SARS-CoV-2-induced lung injury in mice expressing human ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/prevenção & controle , Humanos , Camundongos , Engenharia de Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
medRxiv ; 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075459

RESUMO

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease 1 , Omicron infection causes less severe disease, mostly upper respiratory symptoms 2,3 . The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

14.
Physiol Rep ; 9(21): e15081, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34755490

RESUMO

Influenza remains a major cause of death and disability with limited treatment options. Studies of acute lung injury have identified angiopoietin-2 (Ang-2) as a key prognostic marker and a potential mediator of Acute respiratory distress syndrome. However, the role of Ang-2 in viral pneumonia remains poorly defined. This study characterized the time course of lung Ang-2 expression in severe influenza pneumonia and tested the therapeutic potential of Ang-2 inhibition. We inoculated adult mice with influenza A (PR8 strain) and measured angiopoietin-1 (Ang-1), Ang-2, and Tie2 expressions during the evolution of inflammatory lung injury over the first 7 days post-infection (dpi). We tested a peptide-antibody inhibitor of Ang-2, L1-7, administered at 2, 4, and 6 dpi and measured arterial oxygen saturation, survival, pulmonary edema, inflammatory cytokines, and viral load. Finally, we infected primary human alveolar type II epithelial (AT2) cells grown in air-liquid interface culture with influenza and measured Ang-2 RNA expression. Influenza caused severe lung injury between 5 and 7 dpi in association with increased Ang-2 lung RNA and a dramatic increase in Ang-2 protein in bronchoalveolar lavage. Inhibition of Ang-2 improved oxygenation and survival and reduced pulmonary edema and alveolar-capillary barrier permeability to protein without major effects on inflammation or viral load. Finally, influenza increased the expression of Ang-2 RNA in human AT2 cells. The increased Ang-2 levels in the airspaces during severe influenza pneumonia and the improvement in clinically relevant outcomes after Ang-2 antagonism suggest that the Ang-1/Ang-2 Tie-2 signaling axis is a promising therapeutic target in influenza and potentially other causes of viral pneumonia.


Assuntos
Angiopoietina-2/antagonistas & inibidores , Orthomyxoviridae/patogenicidade , Pneumonia Viral/tratamento farmacológico , Angiopoietina-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptor TIE-2/metabolismo , Carga Viral
15.
bioRxiv ; 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100012

RESUMO

SARS coronavirus-2 (SARS-CoV-2) is causing a global pandemic with large variation in COVID-19 disease spectrum. SARS-CoV-2 infection requires host receptor ACE2 on lung epithelium, but epithelial underpinnings of variation are largely unknown. We capitalized on comprehensive organoid assays to report remarkable variation in SARS-CoV-2 infection rates of lung organoids from different subjects. Tropism is highest for TUBA- and MUC5AC-positive organoid cells, but levels of TUBA-, MUC5A-, or ACE2- positive cells do not predict infection rate. We identify surface molecule Tetraspanin 8 (TSPAN8) as novel mediator of SARS-CoV-2 infection, which is not downregulated by this specific virus. TSPAN8 levels, prior to infection, strongly correlate with infection rate and TSPAN8-blocking antibodies diminish SARS-CoV-2 infection. We propose TSPAN8 as novel functional biomarker and potential therapeutic target for COVID-19.

16.
Blood ; 137(5): 690-701, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232973

RESUMO

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induces TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids, and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. Five-day EVs were more abundant, had higher long-chain ceramide (C16:0, C18:0, C20:0), and lower sphingosine-1-phosphate (S1P) content than 1-day EVs. Transfusion of 5-day, but not 1-day, EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet 4-day EVs were more numerous compared with 2-day EVs, contained more long-chain ceramide and less S1P, and caused more endothelial cell barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long-chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.


Assuntos
Vesículas Extracelulares/fisiologia , Transfusão de Plaquetas/efeitos adversos , Esfingolipídeos/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/etiologia , Animais , Plaquetas/ultraestrutura , Preservação de Sangue , Ceramidas/metabolismo , Células Endoteliais/fisiologia , Endotoxinas/toxicidade , Humanos , Lisofosfolipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Lesão Pulmonar Aguda Relacionada à Transfusão/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/prevenção & controle
17.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L977-L989, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892076

RESUMO

Both physiological homeostasis and pathological disease processes in the lung typically result from complex, yet coordinated multicellular responses that are synchronized via paracrine and endocrine intercellular communication pathways. Of late, extracellular vesicles have emerged as important information shuttles that can coordinate and disseminate homeostatic and disease signals. In parallel, extracellular vesicles in biological fluids such as sputum, mucus, epithelial lining fluid, edema fluid, the pulmonary circulation, pleural fluid, and lymphatics have emerged as promising candidate biomarkers for diagnosis and prognosis in lung disease. Extracellular vesicles are small, subcellular, membrane-bound vesicles containing cargos from parent cells such as lipids, proteins, genetic information, or entire organelles. These cargos endow extracellular vesicles with biologically active information or functions by which they can reprogram their respective target cells. Recent studies show that extracellular vesicles found in lung-associated biological fluids play key roles as biomarkers and effectors of disease. Conversely, administration of naïve or engineered extracellular vesicles with homeostatic or reparative effects may provide a promising novel protective and regenerative strategy to treat lung disease. To highlight this rapidly developing field, the American Journal of Physiology-Lung Cellular and Molecular Physiology is now launching a special Call for Papers on extracellular vesicles in lung health, disease, and therapy. This review aims to set the stage for this call by introducing extracellular vesicles and their emerging roles in lung physiology and pathobiology.


Assuntos
Sistema Endócrino/fisiologia , Vesículas Extracelulares/patologia , Pneumopatias/patologia , Pulmão/patologia , Comunicação Parácrina/fisiologia , Biomarcadores , Humanos , Pulmão/fisiologia , Pneumopatias/terapia , Prognóstico
18.
J Cell Physiol ; 232(8): 2210-2220, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27966776

RESUMO

Tumor necrosis factor-α (TNFα), is a pathogenic cytokine in kidney disease that alters expression of claudins in tubular cells. Previously we showed that in LLC-PK1 cells TNFα caused a biphasic change in transepithelial resistance (TER) consisting of an early drop and recovery, followed by a late increase. However, the underlying mechanisms and the role of specific claudins in the TER effect remained incompletely understood. Here we sought to define how TNFα affects claudins 1, 4, and 7 in tubular cells and to correlate their changes with the TER effect. We show that TNFα elevates total and surface levels of Cldn-1, 4, and 7, and increases their mRNA expression through the ERK and JNK pathways. Further, JNK is also important for TNFα-induced changes in claudin-2 expression. Continuous monitoring of TER using Electric cell-substrate impedance sensing (ECIS) reveals that the two phases of the TNFα effect are differently regulated. Specifically, inhibition of the ERK or JNK pathways prevent the late TER increase, but not the early TER effect. Silencing experiments also show that Cldn-1 is necessary for the early TNFα-induced TER change, while all three claudins appear to contribute to the late TER increase. In summary, we define a central role for ERK and JNK in TNFα-induced altered claudin expression and barrier tightening. Together, our current and previous works show that the TNFα-induced early TER effect requires claudin-1, while claudin-2 decrease is a significant mediator of the late TER increase, and elevation in claudin-1, 4, and 7 contribute to a smaller extent. J. Cell. Physiol. 232: 2210-2220, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Claudina-1/metabolismo , Claudina-4/metabolismo , Junções Intercelulares/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Claudina-1/genética , Claudina-2/genética , Claudina-2/metabolismo , Claudina-4/genética , Impedância Elétrica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Junções Intercelulares/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais/metabolismo , Células LLC-PK1 , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Fatores de Tempo , Transfecção , Regulação para Cima
19.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L802-14, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944090

RESUMO

Extracellular vesicles, specifically microparticles (MPs), are rapidly gaining attention for their capacity to act as biomarkers for diagnosis, prognosis, or responsiveness to therapy in lung disease, in keeping with the concept of precision medicine. However, MP analysis by high-sensitivity flow cytometry (FCM) is complicated by a lack of accurate means for MP enumeration. To address this gap, we report here an enhanced FCM MP gating and enumeration technique based on the use of novel engineered lipid bilayer microspheres (LBMs). By comparison of LBM-based MP enumeration with conventional bead- or fluorescent-based FCM enumeration techniques and a gravimetric consumption gold standard, we found LBMs to be superior to commercial bead preparations, showing the smallest fixed bias and limits of agreement in Bland Altman analyses. LBMs had simultaneous capacity to aid FCM enumeration of MPs in plasma, BAL, and cell culture supernatants. LBM enumeration detected differences in MP counts in mice exposed to intraperitoneal lipopolysaccharide or saline. LBMs provided for 1) higher sensitivity for gating MPs populations, 2) reduced background within MP gates, 3) more appropriate size, and 4) an inexpensive alternative amenable to different fluorescent tags. LBM-based MP enumeration was useful for a series of different FCM systems assessed, whereas LBM gating benefited high- but not low-sensitivity FCM systems compared with fluorescence gating. By offering exclusive advantages over current means of gating and enumerating MPs, LBMs are uniquely suited to realizing the potential of MPs as biomarkers in biological lung fluids and facilitating precision medicine in lung disease.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Pneumopatias/metabolismo , Animais , Biomarcadores/metabolismo , Micropartículas Derivadas de Células/imunologia , Citometria de Fluxo , Bicamadas Lipídicas/química , Lipopolissacarídeos/farmacologia , Pneumopatias/imunologia , Masculino , Camundongos Endogâmicos BALB C , Microesferas , Tamanho da Partícula
20.
Org Lett ; 14(17): 4638-41, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22924839

RESUMO

Well-defined iron(II)-based complexes containing PNNP ligands catalyze a highly enantioselective reduction of N-(diphenylphosphinoyl)- and N-(p-tolylsulphonyl)-ketimines. Under mild conditions and low catalyst loading, the ketimines are successfully reduced to the corresponding amines in enantiomeric excess ranging from 94 to 99%.


Assuntos
Compostos Ferrosos/química , Iminas/química , Nitrilas/química , Fosfinas/química , Catálise , Hidrogenação , Ligantes , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...