Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging ; 9(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37623689

RESUMO

Nano-computed tomography (nano-CT) based on scanning electron microscopy (SEM) is utilized for multimodal material characterization in one instrument. Since SEM-based CT uses geometrical magnification, X-ray targets can be adapted without any further changes to the system. This allows for designing targets with varying geometry and chemical composition to influence the X-ray focal spot, intensity and energy distribution with the aim to enhance the image quality. In this paper, three different target geometries with a varying volume are presented: bulk, foil and needle target. Based on the analyzed electron beam properties and X-ray beam path, the influence of the different target designs on X-ray imaging is investigated. With the obtained information, three targets for different applications are recommended. A platinum (Pt) bulk target tilted by 25° as an optimal combination of high photon flux and spatial resolution is used for fast CT scans and the investigation of high-absorbing or large sample volumes. To image low-absorbing materials, e.g., polymers or organic materials, a target material with a characteristic line energy right above the detector energy threshold is recommended. In the case of the observed system, we used a 30° tilted chromium (Cr) target, leading to a higher image contrast. To reach a maximum spatial resolution of about 100 nm, we recommend a tungsten (W) needle target with a tip diameter of about 100 nm.

2.
Polymers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34578044

RESUMO

Polyamide 6 (PA6) is able to absorb water from the surrounding air and bond to it by forming hydrogen bonds between the carbonamide groups of its molecular chains. Diffusion processes cause locally different water concentrations in the (component) cross-section during the sorption process, resulting in locally different mechanical properties due to the water-induced plasticisation effect. However, the water content of PA6 is usually specified as an integral value, so no information about a local water distribution within a component is provided. This paper shows a method to characterise moisture distributions within PA6 samples using low-energy computer tomography (CT) techniques and comparing the reconstructed results with a developed finite elements (FE) modelling method based on Fick's diffusion laws with concentration-dependent diffusion coefficients. For this purpose, the ageing of the samples at two different water bath temperatures as well as at different integral water contents are considered. The results obtained by CT reconstruction and FE modelling are in very good agreement, so that the concentration distributions by water sorption of PA6 calculated by FEM can be regarded as validated.

3.
J Xray Sci Technol ; 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28339423

RESUMO

BACKGROUND: Laminography is a tomographic technique that allows three-dimensional imaging of flat and elongated objects that stretch beyond the extent of a reconstruction volume. Laminography images can be reconstructed using iterative algorithms based on the Kaczmarz method. OBJECTIVE: This study aims to develop and demonstrate a new reconstruction algorithm that may provide superior image reconstruction quality for this challenged imaging application. METHODS: The images are initially represented using the coefficients over basis functions, which are typically piecewise constant functions (voxels). By replacing voxels with spherically symmetric volume elements (blobs) based on the generalized Kaiser-Bessel window functions, the images are reconstructed using this new adapted version of the algebraic image reconstruction technique. RESULTS: Band-limiting properties of blob functions are beneficial particular in the case of noisy projections and with only a limited number of available projections. Study showed that using blob basis functions improved full-width-at-half-maximum resolution from 10.2±1.0 to 9.9±0.9 (p < 0.001). Signal-to-noise ratio also improved from 16.1 to 31.0. The increased computational demand per iteration was compensated by using a faster convergence rate, such that the overall performance is approximately identical for blobs and voxels. CONCLUSIONS: Despite the higher complexity, tomographic reconstruction from computed laminography data should be implemented using blob basis functions, especially if noisy data is expected.

4.
Rev Sci Instrum ; 87(12): 126105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040959

RESUMO

X-ray tomography typically suffers from insufficient temporal resolution when imaging dynamic processes. Using the example of multiphase flow in solid porous media, we adapt an iterative algorithm to compute 3d tomograms from 2d projections, which allows for a significant reduction of scan time while maintaining a high level of reconstruction quality. To this end, a priori knowledge about the porous medium is incorporated into the reconstruction algorithm. This algorithm is universal when monitoring dynamic changes in any static matrix and allows for an at least five times decreased imaging time with respect to standard reconstruction algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...