Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(11): e2300718, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608445

RESUMO

Manganese hexacyanoferrate is a promising cathode material for lithium and sodium ion batteries, however, it suffers of capacity fading during the cycling process. To access the structural and functional characteristics at the nanometer scale, fresh and cycled electrodes are extracted and investigated by transmission soft X-ray microscopy, which allows chemical characterization with spatial resolution from position-dependent x-ray spectra at the Mn L-, Fe L- and N K-edges. Furthermore, soft X-rays prove to show superior sensitivity toward Fe, compare to hard X-rays. Inhomogeneities within the samples are identified, increasing in the aged electrodes, more dramatically in the Li-ion system, which explains the poorer cycle life as Li-ion cathode material. Local spectra, revealing different oxidation states over the sample with strong correlation between the Fe L-edge, Mn L-edge, and N K-edge, imply a coupling between redox centers and an electron delocalization over the host framework.

2.
Small ; 19(46): e2304585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469201

RESUMO

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

3.
ChemSusChem ; 16(12): e202300201, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36852937

RESUMO

Manganese hexacyanoferrates (MnHCF) are promising positive electrode materials for non-aqueous batteries, including Na-ion batteries, due to their large specific capacity (>130 mAh g-1 ), high discharge potential and sustainability. Typically, the electrochemical reaction of MnHCF associates with phase and structural changes, due to the Jahn-Teller (JT) distortion of Mn sites upon the charge process. To understand the effect of the MnHCF structure on its electrochemical performance, two MnHCF materials with different vacancies content are investigated herein. The electrochemical results show that the sample with lower vacancy content (4 %) exhibits relatively higher capacity retention of 99.1 % and 92.6 % at 2nd and 10th cycles, respectively, with respect to 97.4 % and 79.3 % in sample with higher vacancy content (11 %). Ex-situ X-ray absorption spectroscopy (XAS) and ex situ X-ray diffraction (XRD) characterization results show that a weaker cooperative JT-distortion effect and relatively smaller crystal structure modification occurred for the material with lower vacancies, which explains the better electrochemical performance in cycled electrodes.


Assuntos
Ferrocianetos , Manganês , Eletrodos , Íons
4.
J Chromatogr A ; 1602: 228-236, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31126590

RESUMO

The separation of enantiomers of some chiral weak acids was studied in HPLC with chiral HPLC columns prepared by coating or covalent immobilization of the same chiral selector, namely amylose tris(3-chloro-5-methylphenylcarbamate) onto silica. After screening some representatives of arylpropionic acid derivatives, coumarins and barbiturates in hydrocarbon-alcohol type mobile phases, we studied the temperature dependence of separation parameters for ketoprofen and naproxen. Instances of reversal of the enantiomer elution order were observed function of column temperature, nature of polar modifier and its content in the mobile phase, as well as between the coated and covalently immobilized versions of the columns made with more-or-less the same chiral selector. Thermodynamic parameters such as Gibb's free energy, the standard molar entropy and the standard molar enthalpy of analyte transfer from the mobile to the stationary phase were calculated in some cases in order to explain the differences observed in the enantiomer separation ability and pattern of coated and covalently immobilized columns.


Assuntos
Ácidos/isolamento & purificação , Carbamatos/química , Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Dióxido de Silício/química , Entropia , Estereoisomerismo , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...