Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(8): 3266-3277, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37556766

RESUMO

Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.g., dehydroascorbic acid and methylglyoxal etc.) and some other reactive oxygen/nitrogen species (ROS/RNS), especially with o-phenylenediamine (OPD) based fluorosensors. To avoid these limitations, NO sensors should be designed in such a way that they react spontaneously with NO to give turn-on response within the time frame of t1/2 (typically in the range of 0.1-10 s) of NO and λem in the visible wavelength along with good cell permeability to achieve biocompatibility. With these views in mind, a N-nitrosation based fluorescent sensor, NDAQ, has been developed that is highly selective to NO with ∼27-fold fluorescence enhancement at λem = 542 nm with high sensitivity (LOD = 7 ± 0.4 nM) and shorter response time, eliminating the interference of other reactive species (RCS/ROS/RNS). Furthermore, all the photophysical studies with NDAQ have been performed in 98% aqueous medium at physiological pH, indicating its good stability under physiological conditions. The kinetic assay illustrates the second-order dependency with respect to NO concentration and first-order dependency with respect to NDAQ concentration. The biological studies reveal the successful application of the probe to track both endogenous and exogenous NO in living organisms.


Assuntos
Óxido Nítrico , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Nitrosação , Fluorescência , Oxigênio
2.
ACS Appl Bio Mater ; 5(12): 5854-5864, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36441947

RESUMO

Abnormal levels (high/low) of urinary human serum albumin (HSA) are associated with a number of diseases and thus act as an essential biomarker for quick therapeutic monitoring and biomedical diagnosis, entailing the urgent development of an effective chemosensor to quantify the albumin levels. Herein, we have rationally designed and developed a small fluorogenic molecular probe, (Z)-2-(5-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HJRA) with a twisted intramolecular charge transfer (TICT) property, which can easily self-assemble into nonfluorescent nanoaggregates in aqueous solution. However, HJRA nanoaggregates can selectively bind with serum albumin proteins (HSA/BSA) in ∼100% PBS medium, thereby facilitating the disassembly of nanoaggregates into monomers, exhibiting a clear turn-on red fluorescent response toward HSA and BSA. Analysis of the specific binding mechanism between HJRA and HSA using a site-selective fluorescence displacement assay and molecular docking simulations indicates that a variety of noncovalent interactions are responsible for the disassembly of nanoaggregates with the concomitant trapping of the HJRA monomer at site I in HSA, yielding a substantial red emission caused by the inhibition of intramolecular rotation of HJRA probe inside the hydrophobic cavity of HSA. The limit of detection (LOD) determined by the 3σ/slope method was found to be 1.13 nM, which is substantially below the normal HSA concentration level in healthy urine, signifying the very high sensitivity of the probe toward HSA. The comparable results and quick response toward quantification of HSA in urine by HJRA with respect to the Bradford method clearly point toward the superiority of this method compared to the existing ones and may lead to biomedical applications for HSA quantification in urine. It may also find potential application in live-cell imaging of HSA.


Assuntos
Corantes Fluorescentes , Albumina Sérica , Humanos , Albumina Sérica/análise , Simulação de Acoplamento Molecular , Corantes Fluorescentes/química , Albumina Sérica Humana/análise , Espectrometria de Fluorescência/métodos
3.
Org Biomol Chem ; 18(41): 8450-8458, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057542

RESUMO

Fluorescence spectroscopy is a significant bio-analytical technique for specific detection of nitric oxide (NO) and for broadcasting the in vitro and in vivo biological activities of this gasotransmitter. Herein, a benzo-coumarin embedded smart molecular probe (BCM) is employed for NO sensing through detailed fluorescence studies in purely aqueous medium. All the spectroscopic analysis and literature reports clearly validate the mechanistic insight of this sensing strategy i.e., the initial formation of 1,2,3,4-oxatriazole on treatment of the probe with NO which finally converted to its carboxylic acid derivative. This oxatriazole formation results in a drastic enhancement in fluoroscence intensity due to the photoinduced electron transfer (PET) effect. The kinetic investigation unveils the second and first-order dependency on [NO] and [BCM] respectively. The very low detection limit (16 nM), high fluorescence enhancement (123 fold) in aqueous medium and good formation constant (Kf = (4.33 ± 0.48) × 104 M-1) along with pH invariability, non-cytotoxicity, biocompatibility and cell permeability make this probe a very effective one for tracking NO intracellularly.


Assuntos
Cumarínicos
4.
Org Biomol Chem ; 17(9): 2492-2501, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30758027

RESUMO

Herein, a simple, least-cytotoxic as well as an efficient fluorescent sensor HqEN480 was prepared from (quinolin-8-yloxy)-acetic acid ethyl ester (L1) and N,N-dimethylethylene diamine to recognize NO in 100% aqueous solution. Its marked selectivity and sensitivity towards NO, makes it a highly suitable probe for nitric oxide under in vitro conditions with the possibility of in vivo monitoring of NO. Upon addition of 3.5 equivalents of NO, there is an approximately 7 fold enhancement in fluorescence intensity in aqueous solution with a corresponding Kf value of (1.75 ± 0.07) × 104 M-1. Quantum yields of HqEN480 and [HqEN480-NO] compounds are determined to be 0.04 and 0.22, respectively, using acidic quinine sulphate as a standard. In terms of the 3σ method, the LOD for nitric oxide was found to be 53 nM thus, making the probe suitable for tracking NO in biological systems.

5.
Dalton Trans ; 48(8): 2760-2771, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30724923

RESUMO

We introduce herein, a novel copper complex-based fluorescent probe [CuII(DQ468)Cl]+ that exhibits a significant fluorescence turn-on response towards nitroxyl (HNO) with high selectivity over other biological reactive oxygen, nitrogen and sulfur species, including nitric oxide (NO). A smart strategy, involving HNO-induced reduction of paramagnetic [CuII(DQ468)Cl]+ to diamagnetic [CuI(DQ468)]+ with concomitant fluorescence enhancement via a PET mechanism is focused here. This reduction-based strategy was also supported by X-band EPR response and mass spectroscopy. The metal free probe (DQ468) showed high affinity towards Cu2+ to form [CuII(DQ468)Cl]+ with a 0.091 µM detection limit, which subsequently enabled the detection of HNO in an organo-aqueous medium at biological pH (7.4) in the green wavelength region (λem = 543 nm) with a LOD of 0.41 µM. The ground-state geometries of DQ468, [CuII(DQ468)Cl]+ and [CuI(DQ468)]+ were optimized by DFT calculations, which revealed that the central metal ion in [CuII(DQ468)Cl]+ is in a distorted tetrahedral geometry with the C1 point group. Additionally, the negligible cytotoxicity and good biocompatibility make the developed probe useful for the in vitro detection of HNO.

6.
Org Biomol Chem ; 17(10): 2825, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785180

RESUMO

Correction for 'A smart molecular probe for selective recognition of nitric oxide in 100% aqueous solution with cell imaging application and DFT studies' by Ananya Dutta et al., Org. Biomol. Chem., 2019, DOI: 10.1039/c9ob00177h.

7.
ACS Appl Bio Mater ; 2(5): 1944-1955, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35030683

RESUMO

We report a novel phenazine-embedded fluorescent probe (2-[2-(pyridin-2-ylmethoxy)-phenyl]-1H-imidazo[4,5-b]phenazine, PIP), which upon complexation with Cu(II)-ion-forming [(PIP)CuII(Cl)] becomes nonfluorescent but regenerates fluorescence in a selective reaction with NO and HNO over different biologically reactive oxygen and nitrogen (ROS/RNS) species under physiological conditions. The fluorescence intensity of PIP gets quenched due to the formation of the [(PIP)CuII(Cl)] complex, which regenerates the fluorescence by 67 and 84% upon reaction either with NO or HNO, respectively, in the presence of other biological reducing species. Details of photophysical properties of PIP, [(PIP)CuII(Cl)], and [(PIP)CuI] have been studied by density functional theory (DFT) calculations. The recognition efficacy of [(PIP)CuII(Cl)] for exogenous and endogenous NO and HNO in A549 and RAW 264.7 cells with the flow cytometry application has also been demonstrated successfully.

8.
ACS Appl Bio Mater ; 2(8): 3551-3561, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030741

RESUMO

Here, we present a detailed investigation on the interaction of 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD) embedded olanzapine derivative (OLA-NBD) with a model transport protein, human serum albumin (HSA). The thermodynamic parameters, ΔHo, ΔSo, and ΔGo, as evaluated by considering the van't Hoff relationship imply the major contribution of electrostatic/ionic interactions for the HSA-OLA-NBD association. The OLA-NBD induced quenching of HSA emission occurs through static quenching mechanism, indicating a 1:1 association, as portrayed from Benesi-Hildebrand plot, with ∼104 M-1 association constant value, and it is in good harmony with the value estimated from anisotropy experiment. The invariance of the time-resolved decay behavior of HSA with added OLA-NBD concentration, along with matching dependency of the binding constant (Kb) value on temperature, also supports the occurrence of static quenching. The effect of ß-cyclodextrin on HSA-OLA-NBD binding is characterized by a smaller Kb value revealing that the OLA-NBD molecules are gradually removed from ß-CD by HSA to achieve its medicinal outcome of drug delivery. The outcome from circular dichroism (CD) illustrates the variation of HSA secondary structure upon interaction with OLA-NBD. Concurrently, HSA-OLA-NBD association kinetics is also explored by applying the fluorescence technique. The possible interaction zone of OLA-NBD in HSA is investigated from AutoDock-based docking simulation study.

9.
Photochem Photobiol Sci ; 17(9): 1213-1221, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30065978

RESUMO

In this article, we have designed and synthesized a new, convenient and efficient phenanthroquinone-pyridoxal based fluorogenic probe PQPY, highly suitable for the selective and sensitive detection of nitric oxide in an aerated aqueous (7 : 3/H2O : MeCN) medium at pH 7.0 (10 mM HEPES buffer). Upon addition of nitric oxide, this probe exhibits emission in the green region (λem = 505 nm) which is ascribed to ICT (intramolecular charge transfer) from the phenanthroquinone moiety to the imidazole -N-N[double bond, length as m-dash]O fragment. The apparent formation constant, Kf, of the NO product of the ligand is (1.00 ± 0.2) × 105 M-1 and the LOD is 78 nM. The substantial enhancement of the life-time of the ligand (τ0 = 2.68 ns) occurs due to binding with nitric oxide (τ0 = 3.96 ns). This probe is low cytotoxicity, cell permeable and suitable for living cell imaging application.

10.
ACS Omega ; 3(8): 10306-10316, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459160

RESUMO

A dual-emission pyrene-based new fluorescent probe (N-(4-nitro-phenyl)-N'-pyren-1-ylmethyl-ene-ethane-1,2-diamine (PyDA-NP)) displays green fluorescence for nitric oxide (NO) sensing, whereas it exhibits blue emission in the aggregated state. The mechanism of nitric oxide (NO/NO+) sensing is based on N-nitrosation of aromatic secondary amine, which was not interfered by reactive oxygen species and reactive nitrogen species. The aggregation-induced enhancement of emission (AIEE) behaviors of the PyDA-NP could be attributed to the restriction of intramolecular rotation and vibration, resulting in rigidity enhancement of the molecules. The AIEE behavior of the probe was well established from fluorescence, dynamic light scattering, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, optical fluorescence microscopy, and time-resolved photoluminescence studies. In a H2O/CH3CN binary mixture (8:2 v/v), the probe showed maximum aggregation with extensive (833-fold) increases in fluorescence intensity and high quantum yield (0.79). The aggregated state of the probe was further applied for the detection of nitroexplosives. It displayed efficient sensing of 2,4,6-trinitrophenol (TNP), corroborating mainly the charge-transfer process from pyrene to a highly electron-deficient TNP moiety. Furthermore, for the on-site practical application of the proposed analytical system, a contact-mode analysis was performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...