Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(6)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35741778

RESUMO

Genome-wide association studies have identified 2p13.1 as a prominent susceptibility locus for systemic lupus erythematosus (SLE)­a complex, multisystem autoimmune disease. However, the identity of underlying causal variant (s) and molecular mechanisms for increasing disease susceptibility are poorly understood. Using meta-analysis (cases = 10,252, controls = 21,604) followed by conditional analysis, bioinformatic annotation, and eQTL and 3D-chromatin interaction analyses, we computationally prioritized potential functional variants and subsequently experimentally validated their effects. Ethnicity-specific meta-analysis revealed striking allele frequency differences between Asian and European ancestries, but with similar odds ratios. We identified 20 genome-wide significant (p < 5 × 10−8) variants, and conditional analysis pinpointed two potential functional variants, rs6705628 and rs2272165, likely to explain the association. The two SNPs are near DGUOK, mitochondrial deoxyguanosine kinase, and its associated antisense RNA DGUOK-AS1. Using luciferase reporter gene assays, we found significant cell type- and allele-specific promoter activity at rs6705628 and enhancer activity at rs2272165. This is supported by ChIP-qPCR showing allele-specific binding with three histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II), transcriptional coactivator p300, CCCTC-binding factor (CTCF), and transcription factor ARID3A. Transcriptome data across 28 immune cell types from Asians showed both SNPs are cell-type-specific but only in B-cells. Splicing QTLs showed strong regulation of DGUOK-AS1. Genotype-specific DGOUK protein levels are supported by Western blots. Promoter capture Hi-C data revealed long-range chromatin interactions between rs2272165 and several nearby promoters, including DGUOK. Taken together, we provide mechanistic insights into how two noncoding variants underlie SLE risk at the 2p13.1 locus.


Assuntos
Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Cromatina/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
2.
Leukemia ; 36(7): 1806-1817, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35568768

RESUMO

Idelalisib targets PI3Kδ in the BCR pathway generating only a partial response in CLL patients, indicating that the leukemic cells may have evolved escape signals. Indeed, we detected increased activation of AKT accompanied by upregulation of MYC/BCL2 in post-therapy CLL cells from patients treated with idelalisib/ofatumumab. To unravel the mechanism of increased AKT-activation, we studied the impact of idelalisib on a CLL-derived cell line, MEC1, as a model. After an initial inhibition, AKT-activation level was restored in idelalisib-treated MEC1 cells in a time-dependent manner. As BCAP (B-cell adaptor for PI3K) and CD19 recruit PI3Kδ to activate AKT upon BCR-stimulation, we examined if idelalisib-treatment altered PI3Kδ-recruitment. Immunoprecipitation of BCAP/CD19 from idelalisib-treated MEC1 cells showed increased recruitment of PI3Kδ in association with PI3Kß, but not PI3Kα or PI3Kγ and that, targeting both PI3Kδ with PI3Kß inhibited AKT-reactivation. We detected similar, patient-specific recruitment pattern of PI3K-isoforms by BCAP/CD19 in post-idelalisib CLL cells with increased AKT-activation. Interestingly, a stronger inhibitory effect of idelalisib on P-AKT (T308) than S473 was discernible in idelalisib-treated cells despite increased recruitment of PI3Kδ/PI3Kß and accumulation of phosphatidylinositol-3,4,5-triphosphate; which could be attributed to reduced PDK1 activity. Thus, administration of isoform-specific inhibitors may prove more effective strategy for treating CLL patients.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-akt , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia , Quinazolinonas/farmacologia
3.
Arthritis Rheumatol ; 73(12): 2303-2313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982894

RESUMO

OBJECTIVE: In a recent genome-wide association study, a significant genetic association between rs34330 of CDKN1B and risk of systemic lupus erythematosus (SLE) in Han Chinese was identified. This study was undertaken to validate the reported association and elucidate the biochemical mechanisms underlying the effect of the variant. METHODS: We performed an allelic association analysis in patients with SLE, followed by a meta-analysis assessing genome-wide association data across 11 independent cohorts (n = 28,872). In silico bioinformatics analysis and experimental validation in SLE-relevant cell lines were applied to determine the functional consequences of rs34330. RESULTS: We replicated a genetic association between SLE and rs34330 (meta-analysis P = 5.29 × 10-22 , odds ratio 0.84 [95% confidence interval 0.81-0.87]). Follow-up bioinformatics and expression quantitative trait locus analysis suggested that rs34330 is located in active chromatin and potentially regulates several target genes. Using luciferase and chromatin immunoprecipitation-real-time quantitative polymerase chain reaction, we demonstrated substantial allele-specific promoter and enhancer activity, and allele-specific binding of 3 histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II), CCCTC-binding factor, and a critical immune transcription factor (interferon regulatory factor 1 [IRF-1]). Chromosome conformation capture revealed long-range chromatin interactions between rs34330 and the promoters of neighboring genes APOLD1 and DDX47, and effects on CDKN1B and the other target genes were directly validated by clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing. Finally, CRISPR/dead CRISPR-associated protein 9-based epigenetic activation/silencing confirmed these results. Gene-edited cell lines also showed higher levels of proliferation and apoptosis. CONCLUSION: Collectively, these findings suggest a mechanism whereby the rs34330 risk allele (C) influences the presence of histone marks, RNA Pol II, and IRF-1 transcription factor to regulate expression of several target genes linked to proliferation and apoptosis. This process could potentially underlie the association of rs34330 with SLE.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Alelos , Biologia Computacional , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Regiões Promotoras Genéticas
4.
Blood Cancer J ; 11(5): 93, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001853

RESUMO

Mitochondrial metabolism is the key source for abundant ROS in chronic lymphocytic leukemia (CLL) cells. Here, we detected significantly lower superoxide anion (O2-) levels with increased accumulation of hydrogen peroxide (H2O2) in CLL cells vs. normal B-cells. Further analysis indicated that mitochondrial superoxide dismutase (SOD)2, which converts O2- into H2O2 remained deacetylated in CLL cells due to SIRT3 overexpression resulting its constitutive activation. In addition, catalase expression was also reduced in CLL cells suggesting impairment of H2O2-conversion into water and O2 which may cause H2O2-accumulation. Importantly, we identified two CpG-islands in the catalase promoter and discovered that while the distal CpG-island (-3619 to -3765) remained methylated in both normal B-cells and CLL cells, variable degrees of methylation were discernible in the proximal CpG-island (-174 to -332) only in CLL cells. Finally, treatment of CLL cells with a demethylating agent increased catalase mRNA levels. Functionally, ROS accumulation in CLL cells activated the AXL survival axis while upregulated SIRT3, suggesting that CLL cells rapidly remove highly reactive O2- to avoid its cytotoxic effect but maintain increased H2O2-level to promote cell survival. Therefore, abrogation of aberrantly activated cell survival pathways using antioxidants can be an effective intervention in CLL therapy in combination with conventional agents.


Assuntos
Catalase/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Catalase/metabolismo , Feminino , Regulação Leucêmica da Expressão Gênica , Inativação Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Sirtuína 3/metabolismo , Células Tumorais Cultivadas , Regulação para Cima , Receptor Tirosina Quinase Axl
5.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L903-L917, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810065

RESUMO

High concentrations of oxygen (hyperoxia) are routinely used during anesthesia, and supplemental oxygen is also administered in connection with several other clinical conditions. Although prolonged hyperoxia is known to cause acute lung injury (ALI), whether short-duration hyperoxia causes lung toxicity remains unknown. We exposed mice to room air (RA or 21% O2) or 60% oxygen alone or in combination with 2% isoflurane for 2 h and determined the expression of oxidative stress marker genes, DNA damage and DNA repair genes, and expression of cell cycle regulatory proteins using quantitative PCR and Western analyses. Furthermore, we determined cellular apoptosis using TUNEL assay and assessed the DNA damage product 8-hydroxy-2'-deoxyguanosine (8-Oxo-dG) in the urine of 60% hyperoxia-exposed mice. Our study demonstrates that short-duration hyperoxia causes mitochondrial and nuclear DNA damage and that isoflurane abrogates this DNA damage and decreases apoptosis when used in conjunction with hyperoxia. In contrast, isoflurane mixed with RA caused significant 8-Oxo-dG accumulations in the mitochondria and nucleus. We further show that whereas NADPH oxidase is a major source of superoxide anion generated by isoflurane in normoxia, isoflurane inhibits superoxide generation in hyperoxia. Additionally, isoflurane also protected the mouse lungs against ALI (95% O2 for 36-h exposure). Our study established that short-duration hyperoxia causes genotoxicity in the lungs, which is abrogated when hyperoxia is used in conjunction with isoflurane, but isoflurane alone causes genotoxicity in the lung when delivered with ambient air.


Assuntos
Lesão Pulmonar Aguda , Dano ao DNA , Hiperóxia , Isoflurano/farmacologia , Pulmão , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Linhagem Celular , Hiperóxia/metabolismo , Hiperóxia/patologia , Hiperóxia/prevenção & controle , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , NADPH Oxidases/metabolismo , Superóxidos/metabolismo
6.
Oncotarget ; 8(53): 90632-90633, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29207590
7.
Mol Cancer ; 9: 58, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20226061

RESUMO

INTRODUCTION: To understand the role of two interacting proteins LIMD1 and pRB in development of head and neck squamous cell carcinoma (HNSCC), alterations of these genes were analyzed in 25 dysplastic head and neck lesions, 58 primary HNSCC samples and two HNSCC cell lines. METHODS: Deletions of LIMD1 and RB1 were analyzed along with mutation and promoter methylation analysis of LIMD1. The genotyping of LIMD1 linked microsatellite marker, hmlimD1, was done to find out any risk allele. The mRNA expression of LIMD1 and RB1 were analyzed by Q-PCR. Immunohistochemical analysis of RB1 was performed. Alterations of these genes were correlated with different clinicopathological parameters. RESULTS: High frequency [94% (78/83)] of LIMD1 alterations was observed in the samples studied. Compare to frequent deletion and methylation, mutation of LIMD1 was increased during tumor progression (P = 0.007). Six novel mutations in exon1 and one novel intron4/exon5 splice-junction mutation were detected in LIMD1 along with a susceptible hmlimD1 (CA)20 allele. Some of these mutations [42% (14/33)] produced non-functional proteins. RB1 deletion was infrequent (27%). Highly reduced mRNA expression of LIMD1 (25.1 +/- 19.04) was seen than RB1 (3.8 +/- 8.09), concordant to their molecular alterations. The pRB expression supported this data. Tumors with LIMD1 alterations in tobacco addicted patients without HPV infection showed poor prognosis. Co-alterations of these genes led the worse patients' outcome. CONCLUSIONS: Our study suggests LIMD1 inactivation as primary event than inactivation of RB1 in HNSCC development.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteína do Retinoblastoma/genética , Sequência de Aminoácidos , Autorradiografia , Sequência de Bases , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Frequência do Gene/genética , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Estimativa de Kaplan-Meier , Proteínas com Domínio LIM , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise Multivariada , Polimorfismo de Nucleotídeo Único/genética , Polimorfismo Conformacional de Fita Simples , Prognóstico , Proteína do Retinoblastoma/metabolismo
8.
J Pathol ; 217(3): 408-19, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19023882

RESUMO

To understand the association of candidate tumour suppressor genes SH3GL2, p16(INK4a), p14(ARF), and p15(INK4b) in the pathogenesis of head and neck squamous cell carcinoma (HNSCC), we studied the deletion, mutation, and methylation of these genes in 61 dysplastic lesions and 94 HNSCC samples. In mild dysplasia, SH3GL2, p16(INK4a), and p14(ARF) showed a higher frequency of overall alterations (60-70%) than in p15(INK4b) (40%). However, in subsequent stages of tumour progression, the alteration frequency of these genes did not change significantly. One novel mutation in common exon 2 of p16(INK4a)/p14(ARF) and three in exon 9 of SH3GL2 were seen. Concordance was seen in the expression of these genes with their molecular alterations. Deletions of INK4A-ARF and p15(INK4b) have a significant poor patient outcome. The alterations of p16(INK4a), p14(ARF), and p15(INK4b) were positively correlated with tobacco and inversely with HPV, while SH3GL2 alterations were independent of these factors. Based on aetiological factors, four tumour subtypes were recognized: HPV(-)tobacco(-) (I), HPV(+)tobacco(-) (II), HPV(-)tobacco(+) (III), and HPV(+)tobacco(+) (IV). Groups III and IV showed a high frequency of p16(INK4a)/p14(ARF)/p15(INK4b) alterations with significant poor patient outcome in comparison to group II. Our findings suggest that deregulation of SH3GL2-associated signalling and p16(INK4a)/p14(ARF)/p15(INK4b)-mediated G1-S/G2-M checkpoints of cell cycle are independent pathways for the development of early dysplastic lesions of the head and neck.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Escamosas/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Regulação Neoplásica da Expressão Gênica , Genes p16 , Neoplasias de Cabeça e Pescoço/genética , Proteínas Adaptadoras de Transdução de Sinal/análise , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Infecções por Papillomavirus/complicações , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/virologia , RNA Mensageiro/análise , Fumar/efeitos adversos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...