Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(34): e202401059, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623002

RESUMO

Cyclohepta[b]indoles, prevalent in natural products and pharmaceuticals, are conventionally accessed via metal or Lewis acid-mediated cycloadditions with prefunctionalized substrates. Our study introduces an innovative sequential catalytic assembly for synthesizing cyclohepta[b]indoles from readily available isatin derivatives. The process involves three catalytic sequences: ring-closing metathesis, catalytic hydrogenation, and acid-catalyzed ring expansion. The RCM of 2,2-dialkene-3-oxindoles, formed by butenyl Grignard addition to 3-allyl-3-hydroxy-2-oxindoles, yields versatile spirocyclohexene-3-oxindole derivatives. These derivatives undergo further transformations, including dibromination, dihydroxylation, epoxidation, Wacker oxidation at the double bond. Hydrogenation of spirocyclohexene-3-oxindole yields spirocyclohexane-3-oxindoles. Their subsequent acid-catalyzed ring expansion/aromatization, dependent on the acid catalyst, results in either cyclohepta[b]indoles or cyclohepta[b]indole-indoline conjugates, adding a unique synthetic dimension. The utility of this methodology is exemplified through the synthesis of an A-FABP inhibitor, showcasing its potential in pharmaceutical applications.

2.
Phys Rev Lett ; 132(4): 041601, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335367

RESUMO

We propose a two-dimensional hard-core loop-gas model as a way to regularize the asymptotically free massive continuum quantum field theory that emerges at the Berezinskii-Kosterlitz-Thouless transition. Without fine-tuning, our model can reproduce the universal step-scaling function of the classical lattice XY model in the massive phase as we approach the phase transition. This is achieved by lowering the fugacity of Fock-vacuum sites in the loop-gas configuration space to zero in the thermodynamic limit. Some of the universal quantities at the Berezinskii-Kosterlitz-Thouless transition show smaller finite size effects in our model as compared to the traditional XY model. Our model is a prime example of qubit regularization of an asymptotically free massive quantum field theory in Euclidean space-time and helps understand how asymptotic freedom can arise as a relevant perturbation at a decoupled fixed point without fine-tuning.

3.
ACS Appl Mater Interfaces ; 5(11): 4712-24, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23673318

RESUMO

Today, we stand at the edge of exploring carbon nanotube (CNT) and graphene based polymer nanocomposites as next generation multifunctional materials. However, irrespective of the methods of composite preparation, development of electrical conductivity with high electromagnetic interference (EMI) value at very low loading of CNT and (or) graphene is limited due to poor dispersion of these nanofillers in polymer matrix. Here, we demonstrate a novel technique that involves in-situ polymerization of styrene/multiwalled carbon nanotubes (MWCNTs) in the presence of suspension polymerized polystyrene (PS)/graphite nanoplate (GNP) microbeads, for the preparation of electrically conducting PS/MWCNT/GNP nanocomposites with very high (~20.2 dB) EMI shielding value at extremely low loading of MWCNTs (~2 wt %) and GNP (~1.5 wt %). Finally, through optimizing the ratio of PS-GNP bead and MWCNTs in the nanocomposites, an electrical conductivity of ~9.47 × 10(-3) S cm(-1) was achieved at GNP and MWCNTs loading of 0.29 and 0.3 wt %, respectively. The random distribution of the GNPs and MWCNTs with GNP-GNP interconnection through MWCNT in the PS matrix was the key factor in achieving high electrical conductivity and very high EMI shielding value at this low MWCNT and GNP loadings in PS/MWCNT/GNP nanocomposites. With this technique, the formation of continuous conductive network structure of CNT-GNP-CNT and the development of spatial arrangement for strong π-π interaction among the electron rich phenyl rings of PS, GNP, and MWCNT could be possible throughout the matrix phase in the nanocomposites, as evident from the field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies.

4.
J Nanosci Nanotechnol ; 11(10): 8613-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400233

RESUMO

This investigation deals with an easy method to develop electrical conductivity in polycarbonate (PC)/multi-wall carbon nanotube (MWCNT) nanocomposites with low loading of MWCNT. This was achieved by melt-blending of in-situ bulk polymerized low molecular weight poly(methyl methacrylate) (PMMA)/MWCNT nanocomposites and PC in various compositions at 280 degrees C in internal mixer. Differential scanning calorimetry (DSC) study showed single Tg in (85/15 w/w) PC/PMMA blend, indicating miscibility of PC and PMMA in the blend. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies of the melt-blended PC/PMMA/MWCNT nanocomposites revealed homogeneous dispersion and distribution of MWCNTs in PC matrix. Finally, through optimizing the blending composition of PC and PMMA/MWCNT nanocomposites, electrical conductivity of 3.74 x 10(-7) S x cm(-1) was achieved in the (85/15 w/w) PC/PMMA/MWCNT nanocomposites with the MWCNTs loading as low as approximately 0.37 wt%. Storage modulus of PC was found to increase significantly in presence of small amount (0.37 wt%) of MWCNTs in the nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...