Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(14): 6333-6342, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488088

RESUMO

We present a facile and versatile strategy for enabling CsPbI3 rods to self-assemble at an air-water interface. The CsPbI3 rods, which float at the air-water interface, align under the influence of the rotational flow field due to the vortex motion of a water subphase. The aligned CsPbI3 rods could be transferred onto various substrates without involving any sophisticated instrumentation. The temperature of the subphase, the concentration of the CsPbI3 aliquot, the rotational speed inducing vortex motion, and the lift-off position and angle of the substrate were optimized to achieve high coverage of the self-assembled rods of CsPbI3 on glass. The Rietveld refinement of the XRD profile confirms that the aligned CsPbI3 is in the pure orthorhombic phase ascribed to the Pnma space group. The hydrophilic carboxylic group of the oleic acid attaches to the Pb atoms of the halide perovskite rods, while their hydrophobic tails encapsulate the rods within their shell, creating a shielding barrier between the water and the perovskite surface like a reverse micelle. The aligned CsPbI3 rods exhibit a nearly 47-fold increment in current upon exposure to ammonia gas (amounting to 5.6 times higher sensitivity in ammonia sensing) compared to the non-aligned CsPbI3 rods.

2.
ACS Appl Mater Interfaces ; 16(7): 9231-9246, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329419

RESUMO

For several decades, the development of potential flexible electronics, such as electronic skin, wearable technology, environmental monitoring systems, and the internet of Things network, has been emphasized. In this context, piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs) are highly regarded due to their simple design, high output performance, and cost-effectiveness. On a smaller scale, self-powered sensor research and development based on piezo-triboelectric hybrid nanogenerators have lately become more popular. When a material in the TENG is a piezoelectric material, these two distinct effects can be coupled. Herein, we developed a multimode hybrid piezo-triboelectric nanogenerator using the CsPbI3-PVDF composite. The addition of CsPbI3 to PVDF significantly enhances its electroactive phase and dielectric property, thereby enhancing its surface charge density. 5 wt % CsPbI3 incorporation in poly(vinylidene difluoride) (PVDF) results in a high electroactive phase (FEA) value of >90%. Moreover, CsPbI3-PVDF composite-based PENGs were fabricated in three modes, viz., nanogenerators in contact-separation mode (TECS), single electrode mode (TESE), and sliding mode (TES), and the output performance of all the devices was investigated. The fabricated TECS, TESE, and TES reveal peak output powers of 3.08, 1.29, and 0.15 mW at an external load of 5.6 MΩ. Through analysis of the contact angle measurement and experimental quantification, the hydrophilicity of the composite film has been identified. The hydrophobicity and moisture absorption capacity of CsPbI3-PVDF film make it an attractive option for self-powered humidity monitoring. The TENGs effectively powered several low-powered electronic devices with just a few human finger taps. This study offers a high-performance PTENG device that is reliant on ambient humidity, which is a helpful step toward creating a self-powered sensor.

3.
Int J Biol Macromol ; 255: 128067, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967596

RESUMO

The present study aims to optimize the nutrients for maximization of cyanobacterial biomass with high content of polyhydroxybutyrate (PHB), a bioplastic, and recovery of biomass by auto-sedimentation under diurnal light mimic to sunlight. The multi-objective optimization with desirability approach was used to improve dry cell weight (DCW), PHB content (% w/w), and auto-sedimentation concentration factor (SCF) of biomass. Initially, NaNO3, K2HPO4, TRACE (micronutrient solution), Na2EDTA, and MgSO4.7H2O were screened as important media compositions. Screening was followed by the application of response surface methodology for the development of a model used in multi-objective optimization. The optimized media selected from many optimal solutions, a set of Pareto solutions generated by multi-objective optimization was validated in a flat panel photobioreactor. Using a single-stage cultivation strategy under diurnal light, Chlorogloea fritschii TISTR 8527 has shown capability to produce DCW of 1.23 g/l with PHB content of 31.78 % and SCF of 93.63 with optimal media. This leads to the enhancement of both PHB content (2.72 fold) and SCF (1.64 fold) were observed when compared to the non-optimal medium. This is the first multi-objective optimization study for media optimization using cyanobacteria reported till now under diurnal light mimic to sunlight for bioplastic production.


Assuntos
Cianobactérias , Hidroxibutiratos , Hidroxibutiratos/metabolismo , Poli-Hidroxibutiratos , Cianobactérias/metabolismo , Biopolímeros/metabolismo , Biomassa
4.
ACS Appl Mater Interfaces ; 15(29): 34726-34741, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440167

RESUMO

The main challenges impeding the widespread use of organic-inorganic lead halide perovskites in modern-day technological devices are their long-term instability and lead contamination. Among other environmentally convivial and sustainable alternatives, Cs2SnX6 (X = Cl, Br, and I) compounds have shown promise as ambient-stable, lead-free materials for energy harvesting, and optoelectronic applications. Additionally, they have demonstrated tremendous potential for the fabrication of self-powered nanogenerators in conjunction with piezoelectric polymers like polyvinylidene-fluoride (PVDF). We report on the fabrication of composites constituting solvothermally synthesized Cs2SnX6 nanostructures and PVDF. The electroactive phases in PVDF were boosted by the incorporation of Cs2SnX6, leading to enhanced piezoelectricity in the composites. First-principles density functional theory (DFT) studies were carried out to understand the interfacial interaction between the Cs2SnX6 and PVDF, which unravels the mechanism of physisorption between the perovskite and PVDF, leading to enhanced piezoresponse. The halide ions in the inorganic Cs2SnX6 perovskites were varied systematically, and the piezoelectric behaviors of the respective piezoelectric nanogenerators (PENGs) were investigated. Further, the dielectric properties of these halide perovskite-based hybrids are quantified, and their piezoresponse amplitude, piezoelectric output signals, and charging capacity are also evaluated. Out of the several films fabricated, the optimized Cs2SnI6_PVDF film shows a piezoelectric coefficient (d33) value of ∼200 pm V-1 and a remanent polarization of ∼0.74 µC cm-2 estimated from piezoresponse force microscopy and polarization hysteresis loop measurement, respectively. The optimized Cs2SnI6_PVDF-based device produced an instantaneous output voltage of ∼167 V, a current of ∼5.0 µA, and a power of ∼835 µW across a 5 MΩ resistor when subjected to periodic vertical compression. The output voltage of this device is used to charge a capacitor with a 10 µF capacitance up to 2.2 V, which is then used to power some commercial LEDs. In addition to being used as a pressure sensor, the device is employed to monitor human physiological activities. The device demonstrates excellent operational durability over a span of several months in an ambient environment vouching for its exceptional potential in application to mechanical energy harvesting and pressure sensing applications.

5.
Nanoscale ; 15(27): 11603-11615, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37377099

RESUMO

Lead-free halide perovskites have gained immense popularity in photovoltaic and energy harvesting applications because of their excellent optical and electrical attributes with minimal toxicity. We synthesized composite films of lead-free Cs3Bi2Br9 perovskite embedded in the polyvinylidene fluoride (PVDF) matrix and have investigated their piezoelectric energy harvesting. Five PVDF@Cs3Bi2Br9 composite films were fabricated with varying wt% of the perovskite in the PVDF. The composite with a 4 wt% of the perovskite shows 85% activation of the electroactive ß-phase of PVDF. Additionally, this composite exhibits a maximum polarisation of ∼0.1 µC cm-2 and the best energy storage density of ∼0.8 mJ cm-3 at an applied field of ∼16 kV cm-1 among all the synthesized composites. A nanogenerator fabricated using 4 wt% loading in the composite film produced an instantaneous output voltage of ∼40 V, an instantaneous current of ∼4.1 µA, and a power density of ∼17.8 µW cm-2 across 10 MΩ resistance when repeatedly hammered by the human hand. The nanogenerator is further employed to light up several LEDs and to charge capacitors with a small active area demonstrating significant promise for prospective wearables and portable devices and paving the way for high-performance nanogenerators using lead-free halide perovskites. Density functional theory calculations were performed to understand the interaction of the electroactive phase of the PVDF with different perovskite surface terminations to unravel the various interaction mechanisms and their ensuing charge transfer properties.

6.
ACS Appl Mater Interfaces ; 15(6): 8446-8461, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719930

RESUMO

With the contemplations of ecological and environmental issues related to energy harvesting, piezoelectric nanogenerators (PNGs) may be an accessible, sustainable, and abundant elective wellspring of energy in the future. The PNGs' power output, however, is dependent on the mechanical energy input, which will be intermittent if the mechanical energy is not continuous. This is a fatal flaw for electronics that need continuous power. Here, a self-charging flexible supercapacitor (PSCFS) is successfully realized that can harvest sporadic mechanical energy, convert it to electrical energy, and simultaneously store power. Initially, chemically processed multimetallic oxide, namely, copper cobalt nickel oxide (CuCoNiO4) is amalgamated within the poly(vinylidene fluoride) (PVDF) framework in different wt % to realize high-performance PNGs. The combination of CuCoNiO4 as filler creates a notable electroactive phase inside the PVDF matrix, and the composite realized by combining 1 wt % CuCoNiO4 with PVDF, coined as PNCU 1, exhibits the highest electroactive phase (>86%). Under periodic hammering (∼100 kPa), PNGs fabricated with this optimized composite film deliver an instantaneous voltage of ∼67.9 V and a current of ∼4.15 µA. Furthermore, PNG 1 is ingeniously integrated into a supercapacitor to construct PSCFS, using PNCU 1 as a separator and CuCoNiO4 nanowires on carbon cloth (CC) as the positive and negative electrodes. The self-charging behavior of the rectifier-free storage device was established under bending deformation. The PSCFS device exhibits ∼845 mV from its initial open-circuit potential ∼35 mV in ∼220 s under periodic bending of 180° at a frequency of 1 Hz. The PSCFS can power up various portable electronic appliances such as calculators, watches, and LEDs. This work offers a high-performance, self-powered device that can be used to replace bulky batteries in everyday electronic devices by harnessing mechanical energy, converting mechanical energy from its environment into electrical energy.

7.
J Biotechnol ; 362: 24-35, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36563858

RESUMO

The growth-associated metabolites are produced during the exponential phase; however, this phase terminates due to substrate depletion or product inhibition. In the present study, a semicontinuous mode with a fill-and-draw strategy was applied to extend the exponential phase of the biosurfactant production to overcome the product inhibition and in turn, enhance the yield. Bioreactor studies were performed in batch mode, followed by the semicontinuous operation. A potential biosurfactant producer Bacillus subtilis RSL2 was used in this study at the previously optimized conditions of pH 6.6, temperature 41 °C and 5% (w/v) of molasses. A better mass transfer was achieved in the bioreactor as compared to the shake flask study. In the batch bioreactor study, 90% of sugar was utilized with simultaneous 13.7 g L-1 of biosurfactant production. The sugar utilization was further improved to > 98% in the case of semicontinuous operation employing a fill-and-draw strategy. The exponential phase got extended up to 18 days and a total of 13 L of media was fed in the semicontinuous operation of 21 days as compared to 1.5 L of working volume in the batch reactor. The biosurfactant yield was enhanced by 1.5 folds and was found to be 0.97 g g-1. The produced biosurfactant was identified as a lipopeptide. The interfacial properties of the biosurfactant along with colloidal and thermal stability have been investigated. The critical micelle concentration of the produced biosurfactant was 70 mg L-1. The present study highlighted the efficient utilization of molasses for the production of biosurfactant, an alternative metabolite, in a semicontinuous mode of bioreactor.


Assuntos
Bacillus subtilis , Melaço , Bacillus subtilis/metabolismo , Reatores Biológicos , Micelas , Tensoativos/química
8.
Dalton Trans ; 51(10): 3864-3874, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35171172

RESUMO

Despite the recent advancements in memory devices, the quest for building materials with low power consumption is still on, with the ultimate focus on the durability of the system and reliability and reproducibility of its performance. Halide perovskites (HPs), which have several intriguing photoelectrical traits, have recently been utilized for memory applications; one of the highlights of these materials is the ionic-motion-based fast switching in their crystal structure. In this work, a CsPb2Br5 film is applied as a switching layer to implement memory devices with a flexible Al/CsPb2Br5/ITO-PET structure. The device exhibits a pronounced bipolar resistive switching (RS) characteristic at low operating voltage. The as-fabricated flexible device presented RS features with no initial forming process, concentrated distributions of high and low resistance states (HRS and LRS), uniform switching, endurance over 100 cycles, and a long retention time of 103 s with a high on/off ratio of around 102. Multilevel data-storage capability was also observed via subtle control of the compliance current (CC). Considering the current demand for smart, wearable, and flexible electronic gadgets, the current-voltage (I-V) characteristics of the as-fabricated all-inorganic halide-perovskite-based memory device were further explored under different bending conditions to determine its electrical reliability and mechanical stability. This flexible device exhibited no discernible difference in device performance under flat or bent conditions, and the performance remained nearly the same even after 500 bending cycles. In addition to control of the RS effect of the device using an electrical field, the performance of the device under light was also explored. Blue light modulates the resistive states by regulating the condition of photo-generated electron-hole pairs, and the SET and RESET voltages are changed from 2.34 to 2.14 V and from -2.04 to -1.90 V, respectively. The observed RS behavior is explained on the basis of the creation and partial annihilation of conductive multifilaments, which is dominated by the migration of bromine ions and their associated vacancies in the HP layer. We believe that this work will offer a new context to understand the intrinsic characteristics of HPs for RS applications at low voltage and validate their potential in the design of next-generation stable and nonvolatile memory devices for future flexible electronic systems.

9.
Nanotechnology ; 33(19)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090144

RESUMO

Two dimensional (2D) CsPb2Br5have been successfully synthesized via the chemical precipitation method. Detailed structural, morphological, optical, and dielectric studies of these materials have been performed. These 2D CsPb2Br5plates (of thickness around 200-300 nm) are ascribed to a tetragonal lattice system withI4/mcmspace group. The dielectric attributes such as dielectric constant, electrical modulus, loss factor, and the DC, and AC conductivities, are observed to be varying appreciably with temperature over an extensive frequency window of 10 Hz-50 MHz. The Nyquist plots are investigated using the Maxwell-Wagner equivalent circuit model, which shows the impact of grains and grain boundaries on the overall impedance. Both the free charge conductivity and space charge increase with an increment in temperature, as revealed from the modified Cole-Cole plot. The relaxation time and relaxation mechanism of 2D CsPb2Br5are estimated using the Kohlrausch-Williams-Watts equation. Variation in DC conductivity and relaxation time, as a function of temperature, closely resembles Arrhenius' behavior. Value of activation energy calculated from the DC conductivity corroborates with the same derived from relaxation time. The observation of high dielectric constant and nominal dielectric loss for CsPb2Br5perovskite offers enormous potential in energy harvesting and storage devices.

10.
Appl Opt ; 61(33): 9843-9850, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36606814

RESUMO

Substitution of monocrystalline or polycrystalline silicon as active materials in photovoltaics with highly efficient perovskite materials is quite common. Although perovskite materials offer better flexibility, are cost-effective, and have higher conversion efficiency, they still require structural modifications for better performance. This study quantitatively investigates how mesoporous top surfaces improve the performance of methylammonium lead iodide (C H 3 N H 3 P b I 3) perovskite solar cells. In fact, both the diameter and the depth of the pores have been tuned to achieve better performance. The performance is further optimized by replacing mesoporous active material with planar active material coated with mesoporous indium tin oxide (ITO). We have demonstrated that the proposed structure achieves the maximum conversion efficiency (η) of 27.43% with an open-circuit voltage (V O C ) of 1.07 V and a short circuit current density (J S C ) of 29.09m A/c m 2, with a fill factor (FF) of 88.10%.

11.
Bioprocess Biosyst Eng ; 45(2): 309-319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34767073

RESUMO

Biosurfactants are non-toxic, surface-active biomolecules capable of reducing surface tension (ST) and emulsifying interface at a comparably lower concentration than commercial surfactants. Yet, poor yield, costlier substrates, and complex cultivation processes limit their commercial applications. This study focuses on producing biosurfactants by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor systems using waste cooking oil (WCO) as the sole carbon source. The batch study showed a 92% of WCO biodegradation ability of P. aeruginosa producing 11 g L-1 of biosurfactant. To enhance this biosurfactant production, a fed-batch oil feeding strategy was opted to extend the stationary phase of the bacterium and minimize the effects of substrate deprivation. An enhanced biosurfactant production of 16 g L-1 (i.e. 1.5 times of batch study) was achieved at a feed rate of 5.7 g L-1d-1 with almost 94% of WCO biodegradation activity. The biosurfactant was characterized as rhamnolipid using Fourier transform infrared spectroscopy (FTIR), and its interfacial characterization showed ST reduction to 29 ± 1 mN m-1 and effective emulsification stability at pH value of 4, temperature up to 40 °C and salinity up to 40 g L-1. The biosurfactant exhibited antibacterial activity with minimum inhibitory concentration (MIC) values of 100 µg mL-1 and 150 µg mL-1 for pathogenic E. hirae and E. coli, respectively. These findings suggest that biodegradation of WCO by P. aeruginosa in a fed-batch cultivation strategy is a potential alternative for the economical production of biosurfactants, which can be further explored for biomedical, cosmetics, and oil washing/recovery applications.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Biodegradação Ambiental , Reatores Biológicos , Culinária , Escherichia coli/metabolismo , Glicolipídeos , Pseudomonas aeruginosa/metabolismo , Tensoativos/química
12.
Talanta ; 236: 122837, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635227

RESUMO

A quartz crystal microbalance (QCM) sensor was developed in this study with the vegetable oil from olive (OLV-QCM) to detect an important volatile organic compound, ß-pinene in Indian cardamom. Hydrophobic vegetable oil from olive, which contains oleic acid and omega-9, a monounsaturated fatty acid was found to be suitable for binding ß-pinene through non-covalent bonds. The fabricated QCM sensor coating was examined with the field emission scanning electron microscope (FESEM) and Fourier-transform infrared spectroscopy (FTIR) to determine its surface morphology and chemical compositions. The sensitivity, reproducibility, repeatability, and reusability were studied for the developed sensor. Notably, the sensor was observed to be highly selective towards ß-pinene as compared to the other volatile components present in cardamom. The limit of detection (LOD) and limit of quantitation (LOQ) parameters were determined as 5.57 mg L-1 and 18.57 mg L-1, respectively. Moreover, the adsorption isotherm models of the sensor were studied to validate the physical adsorption affinity towards ß-pinene applying Langmuir, Freundlich, and Langmuir-Freundlich isotherm models. The sensor showed a correlation factor of 0.99 with the peak area percentage of gas chromatography-mass spectrometry (GC-MS) analysis for ß-pinene in cardamom samples. The sensor was prepared with natural vegetable oil, unlike health hazard chemicals. In addition to this, the low-cost, easy fabrication process ensured the suitability of the sensor for practical deployment.


Assuntos
Elettaria , Impressão Molecular , Monoterpenos Bicíclicos , Óleos de Plantas , Polímeros , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes
13.
Dalton Trans ; 50(15): 5327-5341, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881096

RESUMO

Enhanced electrochemical performance of supercapacitors can be achieved through optimal hybridization of electroactive nanomaterials, as it effectively increases the overall surface area and ensures greater electrolyte-electrode interaction. This work reports the realization of a manganese tungstate and amorphous carbon nanotube (MnWO4-aCNT) hybrid and its utilization as the electrodes for a solid-state asymmetric supercapacitor. Large-scale synthesis of aCNTs was carried out via an economical solid-state reaction at low temperature and the walls of these nanotubes were decorated with MnWO4 nanorods via a surfactant-free in situ hydrothermal process. The as-fabricated electrode based on this hybrid over nickel foam delivered a high specific capacitance of 542.18 F g-1 at a scan rate of 2 mV s-1, which is much superior to the values of the structural units separately. This MnWO4-aCNT based electrode showed a high-rate capacity with ∼100% capacitance retention and a coulombic efficiency of ∼100% even after operation for 15 000 cycles. A solid-state asymmetric supercapacitor based on this hybrid attained an energy density of 5.6 W h kg-1 and a power density as high as 893.6 W kg-1. Significantly enhanced electrochemical behaviour registered from the hybrid sample is accounted for by its enhanced surface area and thereby greater number of redox reaction sites along with the positive synergetic effect of the building blocks. This study unlocks further exploration possibilities with other types of aCNT-based hybrid materials for the development of highly stable, non-toxic and cost-effective sustainable energy storage systems.

14.
Dalton Trans ; 49(44): 15788-15799, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147315

RESUMO

Numerous reports have been made in the literature on the usability of a halide perovskite, namely methyl ammonium lead iodide (CH3NH3PbI3), as a light harvesting material. Suitable optimization in material composition and synthesis has led to an improvement in device performance. However, the susceptibility of CH3NH3PbI3 towards atmospheric water is an alarming issue which hinders its long-term application in day-to-day life. Herein, low temperature synthesized V2O5 nanorods are incorporated into the CH3NH3PbI3 matrix to facilitate carrier dynamics by interface engineering. The optimized hybrid sample exhibits a much improved and stable photo-response behaviour than the pristine building blocks. Additionally, the modified perovskite shows improved hydrophobicity in the form of small-scale surface undulations due to the incorporation of V2O5 nanorods into it. This way, we have solved two problems with one single action, firstly by improving the device performance and secondly by stabilizing the sample against ambient water species.

15.
Appl Opt ; 59(30): 9532-9539, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33104673

RESUMO

Enhancement of optical to electrical conversion is vital for improving the efficiency of any solar cell. In recent years, use of thin films instead of bulk wafers has resulted in a huge reduction of production cost, and as such, efficiency enhancement of thin-film solar cells is considered in this study. Though this enhancement depends on several factors, most significant among them is the increase in light absorption within the active material of the solar cell. In this work, various types of grating structures on both sides of active solar cell material for light trapping are studied in detail, and a new type of arrangement of optimized grating structure that significantly improves the light absorption is selected. Enhancement of light absorption for change in dielectric material of the grating structure without changing the active material is also observed. Along with structural optimization, simulated electrical characterization of the samples was also performed, which yields a short-circuit current density of 29.27mA/cm2 with conversion efficiency of 14.51%, having a fill factor of 0.83 for a typical ultrathin layer of active material of thickness 2 µm. This is quite significant because typical cells of this category have much lesser conversion efficiency.

16.
J Hazard Mater ; 380: 120855, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325693

RESUMO

Photocatalytic activity of low band gap semiconductor largely restrained by high recombination rate of photogenerated charge carriers. To enhance the catalytic performance numerous protocols were adopted amongst which designing of novel hybrid via coupling of semiconductors are very intriguing from modest application point of view. Here, we report facile realization of type II heterojunctions embracing polymeric graphitic carbon nitride (g-C3N4/GCN) and all-inorganic cesium lead halide perovskite (CsPbBrCl2) for degradation complex organic effluents under visible-light illumination. Synthesized hybrid presented much improved performance in toxic cationic and anionic dyes degradation as compared to individual building units. Signature of favorable staggered gap junction's formation at interface was confirmed via Mott-Schottky analysis. Such kind of junctions delay the recombination of photogenerated electron holes and facilitates active radical generation at catalyst surface thereby ensures improved photocatalytic performance. Charge transfer process in heterojunction further illustrated via Density functional theory (DFT) based calculations. Several scavenger tests have been performed to examine the impact of different active radicals in the photocatalysis which suggests manifold performance improvement in the presence of very small concentrations of EDTA. A plausible photocatalytic mechanism in accordance with the type II junction has been proposed.

17.
Bioresour Technol ; 284: 43-55, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30925422

RESUMO

Outdoor high cell-density microalgae cultivation is highly challenging due to unavailability of appropriate CO2 feeding strategy under diurnal sunlight intensities. Hence, a novel real time light based CO2 feeding strategy was firstly developed under diurnal simulated sunlight (LED) to test on Chlorella sp. in a 10 L scale bubble column photobioreactor. The strategy yielded a biomass titer of 5.12 g L-1 under simulated sunlight, far higher than existing biomass-density and pH-control based CO2 feeding strategies. In outdoor culturing, the proposed feeding strategy yielded high biomass titers of 6.8 and 9.0 g L-1 in growth-phase of two-stage and single-stage lipid induction studies respectively with same biomass productivity of 0.8 g L-1 day-1. Subsequently, two-stage lipid induction strategy of 6.8 g L-1 titer yielded biodiesel productivity of 120 g L-1 day-1, whereas single-stage strategy of 9.0 g L-1 titer was unable to induce lipid. Moreover, specific light availability affects the lipid production.


Assuntos
Biocombustíveis , Dióxido de Carbono/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Fotobiorreatores , Luz Solar , Biomassa , Chlorella/efeitos da radiação , Lipídeos/biossíntese , Microalgas/efeitos da radiação
18.
Prep Biochem Biotechnol ; 49(3): 255-269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794071

RESUMO

The main focus of the work is to study Chlorella pyrenoidosa mediated photoautotrophic production of lipid in a bubble column photobioreactor using CO2 as carbon source under natural diurnal outdoor sunlight. The limiting and inhibiting concentrations of CO2 in sparging gas, nitrogen inhibition, reversibility of the CO2 inhibition on growth, and lipid production have been investigated under natural sunlight. A process model coupled with light distribution inside the culture has been developed considering different concentration of dissolved CO2 and urea, repression of nitrogen on lipid production under natural sunlight diurnal in nature in a bubble column reactor. The biomass titer of 4.6 g/L with 10% CO2 has been achieved within 5 days of culture under sunlight. A two stage photoautotrophic lipid production strategy in a sintered disc bubble column photobioreactor under natural sunlight has been developed. 30% (w/w-DCW) lipid within 5 days of lipid induction period has been achieved. The biomass productivity of 0.91 ± 0.01 gm/L/day in growth period with sufficient urea and lipid productivity of 410 ± 12 mg/L/day in last 2 days of urea starvation period have been achieved in outdoor photoautotrophic cultivation under natural sunlight using CO2 as carbon source.


Assuntos
Biocombustíveis/microbiologia , Chlorella/metabolismo , Ácidos Graxos/biossíntese , Fotobiorreatores/microbiologia , Dióxido de Carbono/metabolismo , Modelos Biológicos , Fosfatos/metabolismo , Luz Solar , Ureia/metabolismo
19.
Bioresour Technol ; 278: 231-241, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30703641

RESUMO

Current study focusses on the concomitant production of fatty acid methyl ester (FAME, biodiesel) and exopolysaccharides (EPS) from Scenedesmus abundans cell factory in flat panel photobioreactor using cost effective harvesting strategy. Parallel mini and medium scale flat panel photobioreactors (PBRs) with special gas sparging system enabling high gas to liquid mass transfer and efficient mixing were designed. Biomass titer of 6.9 g/l with overall biomass productivity of 1.2 g/l/day was achieved with constant high light intensity of 2162 µE/m2/s in growth phase (134 h) using optimum nutrient concentration. FAME concentration of 1.53 g/l was achieved after 15 days of nitrogen deprivation condition with productivity of 67 mg/l/day. The EPS production of 236 mg/l with a yield of 37 mg/g biomass was achieved. The strain proved its capability to produce multiproducts simultaneously in a single stage PBR by natural autoflocculation harvesting technology.


Assuntos
Biocombustíveis , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Fotobiorreatores , Scenedesmus/metabolismo , Biomassa
20.
RSC Adv ; 9(67): 39011-39024, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35540680

RESUMO

A low-cost and scalable harvesting process was demonstrated for Chlorella sp. FC2 IITG, which offered an improved process economy for the production of a microalgal biomass feedstock via (i) the utilization of a cheaper commercial grade chemical flocculant; (ii) the recycling of post-harvested nutrient-rich spent water for the successive growth of the FC2 cells and (iii) the modulation of the flocculant dose, resulting in the non-requirement of a pH adjustment of the spent water and separate inoculum development step. Ferrous sulphate and ferric chloride were screened from a pool of four commercial grade flocculants, resulting in high harvesting efficiencies of 99.83% and 99.93% at the lower flocculant doses (g of flocculant g of dry biomass-1) of 2.5 and 3, respectively. The effect of the recycled nutrient-rich spent water and treated non-flocculated microalgal cells after harvesting was evaluated for the growth performance of the FC2 cells in six successive batches. It was found that ferrous sulphate was superior over ferric chloride in terms of the recyclability of the spent water for more number of batches, offering similar growth kinetics and nutrient recovery efficiency as compared with that of the control sample. The scale-up feasibility of the harvesting process was evaluated with a 5 L photobioreactor under indoor conditions and a 350 L open raceway pond under outdoor conditions with a modulated flocculant dose of 1.5 g ferrous sulphate. g dry biomass-1. The harvesting cost of 1 kg biomass using commercial grade ferrous sulphate was estimated to be in the range of 0.17-0.3 USD and was significantly lower as compared to that of analytical grade ferrous sulphate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...