Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 637: 134-146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36696789

RESUMO

HYPOTHESIS: Gradients in the concentration of amphiphiles play an important role in many non-equilibrium processes involving complex fluids. Here we explore if non-equilibrium interfacial behaviors of thermotropic (oily) liquid crystals (LCs) can amplify microscopic gradients in surfactant concentration into macroscopic optical signals. EXPERIMENTS: We use a milli-fluidic system to generate gradients in aqueous sodium dodecyl sulfate (SDS) concentration and optically quantify the dynamic ordering of micrometer-thick nematic LC films that contact the gradients. FINDINGS: We find that the reordering of the LCs is dominated by interfacial shearing by Marangoni flows, thus providing simple methods for rapid mapping of interfacial velocities from a single optical image and investigating the effects of confinement of surfactant-driven interfacial flows. Additionally, we establish that surface advection and surfactant desorption are the two key processes that regulate the interfacial flows, revealing that the dynamic response of the LC can provide rapid and potentially high throughput approaches to measurement of non-equilibrium interfacial properties of amphiphiles. We also observe flow-induced assemblies of microparticles to form at the LC interface, hinting at new non-equilibrium approaches to microparticle assembly. We conclude that dynamic states adopted by LCs in the presence of surfactant concentration gradients provide new opportunities for engineering complex fluids beyond equilibrium.

2.
Langmuir ; 35(10): 3797-3804, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30776314

RESUMO

Reversible alteration between different emulsion morphologies like core-shell and Janus is conventionally triggered by altering the interfacial energy between different phases. In contrast, here, we show that the morphology of dispersed droplets can be changed also when the emulsion is sufficiently confined between two parallel plates. In particular, we use three immiscible phases: silicone oil, paraffin oil, and aqueous solution of surface-active agents like agarose, sodium dodecylsulfate, dioctyl sodium sulfosuccinate, and cetyl trimethylammonium bromide to generate oil-in-water emulsions consisting of complex morphologies of the dispersed droplets. In the unconfined state, the core-shell drops appear with paraffin oil at the core and silicone oil at the shell. However, the morphology of oil droplets changes to Janus when the emulsion is confined between two parallel plates. We have shown that the meniscus of the continuous phase that forms between the parallel plates alters the pressure field in the emulsion and the total energy of the system, which trigger such morphological transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...