Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0268683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35980975

RESUMO

The actinorhizal plant Datisca glomerata (Datiscaceae, Cucurbitales) establishes a root nodule symbiosis with actinobacteria from the earliest branching symbiotic Frankia clade. A subfamily of a gene family encoding nodule-specific defensin-like cysteine-rich peptides is highly expressed in D. glomerata nodules. Phylogenetic analysis of the defensin domain showed that these defensin-like peptides share a common evolutionary origin with nodule-specific defensins from actinorhizal Fagales and with nodule-specific cysteine-rich peptides (NCRs) from legumes. In this study, the family member with the highest expression levels, DgDef1, was characterized. Promoter-GUS studies on transgenic hairy roots showed expression in the early stage of differentiation of infected cells, and transient expression in the nodule apex. DgDef1 contains an N-terminal signal peptide and a C-terminal acidic domain which are likely involved in subcellular targeting and do not affect peptide activity. In vitro studies with E. coli and Sinorhizobium meliloti 1021 showed that the defensin domain of DgDef1 has a cytotoxic effect, leading to membrane disruption with 50% lethality for S. meliloti 1021 at 20.8 µM. Analysis of the S. meliloti 1021 transcriptome showed that, at sublethal concentrations, DgDef1 induced the expression of terminal quinol oxidases, which are associated with the oxidative stress response and are also expressed during symbiosis. Overall, the changes induced by DgDef1 are reminiscent of those of some legume NCRs, suggesting that nodule-specific defensin-like peptides were part of the original root nodule toolkit and were subsequently lost in most symbiotic legumes, while being maintained in the actinorhizal lineages.


Assuntos
Fabaceae , Cisteína/metabolismo , Defensinas/genética , Defensinas/metabolismo , Escherichia coli/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Peptídeos/metabolismo , Filogenia , Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
2.
Front Plant Sci ; 10: 1085, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608077

RESUMO

Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.

3.
Funct Plant Biol ; 44(5): 515-524, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480584

RESUMO

Salinity disturbs both apoplastic and cytosolic Ca2+ and pH ([Ca2+]apo, [Ca2+]cyt, pHapo and pHcyt) homeostasis, and decreases plant growth. Seedlings of Vicia faba L. cv. Fuego were cultivated in hydroponics for 7 days under control, salinity (S), extra Ca (Ca) or salinity with extra Ca (S+Ca) conditions. The [Ca2+]apo, and pHapo in the leaves were then recorded in parallel by a pseudoratiometric method, described here for the first time. Lower [Ca2+]apo and higher pHapo were obtained under salinity, whereas extra Ca supply increased the [Ca2+]apo and acidified the pHapo. Moreover, the ratiometric imaging recorded that [Ca2+]cyt and pHcyt were highest in S+Ca plants and lowest in control plants. After all pretreatments, direct addition of NaC6H11O7 to leaves induced a decrease in [Ca2+]apo in control and S+Ca plants, but not in S and Ca plants, and only slightly affected pHapo. Addition of NaCl increased [Ca2+]cyt in protoplasts from all plants but only transiently in protoplasts from S+Ca plants. Addition of NaCl decreased pHcyt in protoplasts from Ca-pretreated plants. We conclude that Ca supply improves both apoplastic and cytosolic ion homeostasis. In addition, NaC6H11O7 probably causes transport of Ca from the apoplast into the cytosol, thereby leading to a higher resting [Ca2+]cyt.

4.
Plant Physiol Biochem ; 82: 244-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25010036

RESUMO

Salt stress in plants impacts apoplastic ion activities and cytosolic ionic homeostasis. The ameliorating effects exerted by calcium or potassium on compartmentation of ions in leaves under salinity are not fully understood. To clarify how calcium or potassium supply could ameliorate ion homeostasis and ATPase activities under salinity, 5 mM CaSO4 or 10 mM K2SO4 were added with, or without, 100 mM NaCl for 7 d and 21 d to Vicia faba grown in hydroponics. The apoplastic pH was detected with Oregon Green dextran dye in intact second-uppermost leaves by microscopy-based ratio imaging. The cytosolic Ca(2+), Na(+), K(+) activities and pH were detected in protoplasts loaded with the acetoxy methyl-esters of Fura-2, SBFI, PBFI and BCECF, respectively, using epi-fluorescence microscopy. Furthermore, total Ca(2+), Na(+), K(+) concentrations and growth parameters were investigated. The ATPase hydrolyzing activity increased with time, but decreased after long salinity treatment. The activity largely increased in calcium-treated plants, but was depressed in potassium-treated plants after 7 d. The calcium supply increased Vmax, and the ATPase activity increased with salinity in a non-competitive way for 7 d and 21 d. The potassium supply instead decreased activity competitively with Na(+), after 21 d of salinity, with different effects on Km and Vmax. The confirmed higher ATPase activity was related with apoplast acidification, cytosol alkalinization and low cytosolic [Na(+)], and thus, might be an explanation why extra calcium improved shoot and leaf growth.


Assuntos
Cálcio/metabolismo , Membrana Celular/enzimologia , Íons/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Vicia faba/enzimologia , Homeostase , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...