Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(29): e2302893, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183271

RESUMO

A major challenge in Cyclic Swing Separation using flexible adsorbents that have high equilibrium CO2  adsorption capacity is their very low-pressure hysteresis that hinders efficient desorption. Mg-Gallate MOF is such a flexible adsorbent that only begins to release CO2 at its pore closing pressure at 0.08 bar and 30 °C, showing very slow and inefficient desorption in pressure or temperature swing. Therefore, a novel strategy is presented that combines state of art technique Magnetic Induction Heating with a vacuum swing for fast and efficient CO2 desorption from flexible adsorbents at a moderately elevated temperature (70 °C).

2.
J Org Chem ; 86(21): 15689-15694, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34623156

RESUMO

This note reports the synthesis and peptide formation of a novel triple G-C-T nucleobase amino acid (NBA) building block featuring three recognition faces: DDA (G mimic), DAA (C mimic), and ADA (T mimic). Readily obtainable in multigram scale in a remarkably easy one-step reaction, this unique NBA building block offers scope for wide ranging applications for nucleic acid recognition and nucleic acid peptide/protein interaction studies.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Aminoácidos , Conformação de Ácido Nucleico , Peptídeos
3.
ACS Appl Mater Interfaces ; 13(21): 24976-24983, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014632

RESUMO

Carbon capture from industrial effluents such as flue gas or natural gas mixture (cf. landfill gas), the primary sources of CO2 emission, greatly aids in balancing the environmental carbon cycle. In this context, the most energy-efficient physisorptive CO2 separation process can benefit immensely from improved porous sorbents. Metal organic frameworks (MOFs), especially the ultramicroporous MOFs, built from readily available small and rigid ligands, are highly promising because of their high selectivity (CO2/N2) and easy scalability. Here, we report two new ultramicroporous Co-adeninato isophthalate MOFs. They concomitantly carry basic functional groups (-NH2) and Lewis acidic sites (coordinatively unsaturated Co centers). They show good CO2 capacity (3.3 mmol/g at 303 K and 1 bar) along with high CO2/N2 (∼600 at 313 K and 1 bar and ∼340 at 303 K and 1 bar) selectivity, working capacity, and smooth diffusion kinetics (Dc = 7.5 × 10-9 m2 s-1). The MOFs exhibit good CO2/N2 kinetic separation under both dry and wet conditions with a smooth breakthrough profile. Despite their well-defined CO2 adsorption sites, these MOFs exhibit only a moderately strong interaction with CO2 as evidenced from their HOA values. This counterintuitive observation is ubiquitous among many MOFs adorned with strong CO2 adsorption sites. To gain insights, we have identified the binding sites for CO2 using simulation and MD studies. The radial distribution function analysis reveals that despite the amine and bare-metal sites, the pore size and the pore structure determine the positions for the CO2 molecules. The most favorable sites become the confined spaces lined by aromatic rings. A plausible explanation for the lack of strong adsorption in these MOFs is premised from these collective studies, which could aid in the future design of superior CO2 sorbents.

4.
Chemistry ; 26(55): 12544-12548, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428326

RESUMO

Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal-organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni-MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2 . Further 129 Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.

5.
Chem Asian J ; 14(20): 3736-3741, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479203

RESUMO

Here, we report two novel water-stable amine-functionalized MOFs, namely IISERP-MOF26 ([NH2 (CH3 )2 ][Cu2 O(Ad)(BDC)]⋅(H2 O)2 (DMA), 1) and IISERP-MOF27 ([NH2 (CH3 )2 ]1/2 [Zn4 O(Ad)3 (BDC)2 ]⋅(H2 O)2 (DMF)1/2 , 2), which show selective CO2 capture capabilities. They are made by combining inexpensive and readily available terephthalic acid and N-rich adenine with Cu and Zn, respectively. They possess 1D channels decorated by the free amine group from the adenine and the polarizing oxygen atoms from the terephthalate units. Even more, there are dimethyl ammonium (DMA+ ) cations in the pore rendering an electrostatic environment within the channels. The activated Cu- and Zn-MOFs physisorb about 2.7 and 2.2 mmol g-1 of CO2 , respectively, with high CO2 /N2 and moderate CO2 /CH4 selectivity. The calculated heat of adsorption (HOA=21-23 kJ mol-1 ) for the CO2 in both MOFs suggest optimal physical interactions which corroborate well with their facile on-off cycling of CO2 . Notably, both MOFs retain their crystallinity and porosity even after soaking in water for 24 hours as well as upon exposure to steam over 24 hours. The exceptional thermal and chemical stability, favorable CO2 uptakes and selectivity and low HOA make these MOFs promising sorbents for selective CO2 capture applications. However, the MOF's low heat of adsorption despite having a highly CO2 -loving groups lined walls is quite intriguing.

6.
ACS Omega ; 4(8): 13465-13473, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460475

RESUMO

Electrochemical water splitting is the most energy-efficient technique for producing hydrogen and oxygen, the two valuable gases. However, it is limited by the slow kinetics of the anodic oxygen evolution reaction (OER), which can be improved using catalysts. Covalent organic framework (COF)-derived porous carbon can serve as an excellent catalyst support. Here, we report high electrocatalytic activity of two composites, formed by supporting RuO2 on carbon derived from two COFs with closely related structures. These composites catalyze oxygen evolution from alkaline media with overpotentials as low as 210 and 217 mV at 10 mA/cm2, respectively. The Tafel slopes of these catalysts (65 and 67 mV/dec) indicate fast kinetics compared to commercial RuO2. The observed activity is the highest among all RuO2-based heterogeneous OER catalysts-a touted benchmark OER catalyst. The high catalytic activity arises from the extremely small-sized (∼3-4 nm) RuO2 nanoparticles homogeneously dispersed in a micro-mesoporous (BET = 517 m2/g) COF-derived carbon. The porous graphenic carbon favors mass transfer, while its N-rich framework anchors the catalytic nanoparticles, making it highly stable and recyclable. Crucially, the soft pyrolysis of the COF enables the formation of porous carbon and simultaneous growth of small RuO2 particles without aggregation.

7.
Chem Commun (Camb) ; 54(96): 13472-13490, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30403205

RESUMO

This article explains the need for energy-efficient large-scale CO2 capture and briefly mentions the requirements for optimal solid sorbents for this application. It illustrates the potential of ultra-microporous metal-organic frameworks (MOFs, pore size: <7.0 Å) for the separation of CO2 from industrially abundant greenhouse gas mixtures. Some high-performing and well-studied MOFs are discussed to communicate the present status of the field. From their structural features, some successful design principles for creating such ultra-microporous MOFs are derived. Towards the close, favorable CO2 diffusion in many of these small pore MOFs is highlighted.

8.
Inorg Chem ; 57(9): 5267-5272, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29688012

RESUMO

Here, we present a new ultramicroporous Cu2 paddlewheel based MOF. This ultramicroporous MOF has most of the features such as porosity (BET surface area = 945 m2/g), CO2 capacity (3.5 mmol/g at ambient temperature and pressure), CO2/N2 selectivity (sCO2/N2 = 250), and fast CO2 diffusion kinetics ( Dc = 2.25 × 10-9 m2/s), comparable to some of the other high-performing ultramicroporous MOFs, with strong binding sites. Typically, such MOFs exhibit strong CO2-framework interactions (evidenced from a heat of adsorption ≥ 38 kJ/mol). However, the MOF explained here, despite having channels lined by the amine and the open-metal sites, possesses only a moderate CO2-framework interaction (HOA = 26 kJ/mol). Using periodic DFT, we have probed this counterintuitive observation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...