Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38254785

RESUMO

The tumor microenvironment (TME) is pivotal in cancer progression and the response to immunotherapy. A "hot" tumor typically contains immune cells that promote anti-tumor immunity, predicting positive prognosis. "Cold" tumors lack immune cells, suggesting a poor outlook across various cancers. Recent research has focused on converting "cold" tumors into "hot" tumors to enhance the success of immunotherapy. A prerequisite for the studies of the TME is an accurate knowledge of the cell populations of the TME. This study aimed to describe the immune TME of lung and colorectal cancer and melanoma, focusing on lymphoid and myeloid cell populations. We induced heterotopic immunocompetent tumors in C57BL/6 mice, using KP and LLC (Lewis lung carcinoma) cells for lung cancer, MC38 cells for colorectal cancer, and B16-F10 cells for melanoma. Immune cell infiltration was analyzed using multicolor flow cytometry in single-cell suspensions after tumor excision. KP cell tumors showed an abundance of neutrophils and eosinophils; however, they contained much less adaptive immune cells, while LLC cell tumors predominated in monocytes, neutrophils, and monocyte-derived dendritic cells. Monocytes and neutrophils, along with a significant T cell infiltration, were prevalent in MC38 tumors. Lastly, B16-F10 tumors were enriched in macrophages, while showing only moderate T cell presence. In conclusion, our data provide a detailed overview of the immune TME of various heterotopic tumors, highlighting the variabilities in the immune cell profiles of different tumor entities. Our data may be a helpful basis when investigating new immunotherapies, and thus, this report serves as a helpful tool for preclinical immunotherapy research design.

2.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136314

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, has been associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). However, its role in tumorigenesis remains poorly understood. This work aimed to explore the impact of DDR1 expression on immune cell infiltration in lung adenocarcinoma. Pharmacological inhibition and knockout of DDR1 were used in an immunocompetent mouse model of KRAS/p53-driven lung adenocarcinoma (LUAD). Tumor cells were engrafted subcutaneously, after which tumors were harvested for investigation of immune cell composition via flow cytometry. The Cancer Genome Atlas (TCGA) cohort was used to perform gene expression analysis of 509 patients with LUAD. Pharmacological inhibition and knockout of DDR1 increased the tumor burden, with DDR1 knockout tumors showing a decrease in CD8+ cytotoxic T cells and an increase in CD4+ helper T cells and regulatory T cells. TCGA analysis revealed that low-DDR1-expressing tumors showed higher FoxP3 (regulatory T-cell marker) expression than high-DDR1-expressing tumors. Our study showed that under certain conditions, the inhibition of DDR1, a potential therapeutic target in cancer treatment, might have negative effects, such as inducing a pro-tumorigenic tumor microenvironment. As such, further investigations are necessary.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37573716

RESUMO

We recently described that monoacylglycerol lipase (MGL) is present in the tumor microenvironment (TME), increasing tumor growth. In this study we compare the implications of MGL deficiency in the TME in different tumor types. We show that subcutaneous injection of KP (KrasLSL-G12D/p53fl/fl, mouse lung adenocarcinoma) or B16-F10 cells (mouse melanoma) induced tumor growth in MGL wild type (WT) and knockout (KO) mice. MGL deficiency in the TME attenuated the growth of KP cell tumors whereas tumors from B16-F10 cells increased in size. Opposite immune cell profiles were detected between the two tumor types in MGL KO mice. In line with their anti-tumorigenic function, the number of CD8+ effector T cells and eosinophils increased in KP cell tumors of MGL KO vs. WT mice whereas their presence was reduced in B16-F10 cell tumors of MGL KO mice. Differences were seen in lipid profiles between the investigated tumor types. 2-arachidonoylglycerol (2-AG) content significantly increased in KP, but not B16-F10 cell tumors of MGL KO vs. WT mice while other endocannabinoid-related lipids remained unchanged. However, profiles of phospho- and lysophospholipids, sphingomyelins and fatty acids in KP cell tumors were clearly distinct to those measured in B16-F10 cell tumors. Our data indicate that TME-localized MGL impacts tumor growth, as well as levels of 2-AG and other lipids in a tumor specific manner.


Assuntos
Monoacilglicerol Lipases , Neoplasias , Camundongos , Animais , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Microambiente Tumoral , Ácidos Graxos , Camundongos Endogâmicos C57BL
4.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627581

RESUMO

Myeloperoxidase (MPO) is a neutrophil-derived enzyme that has been recently associated with tumour development. However, the mechanisms by which this enzyme exerts its functions remain unclear. In this study, we investigated whether myeloperoxidase can alter the function of A549 human lung cancer cells. We observed that MPO promoted the proliferation of cancer cells and inhibited their apoptosis. Additionally, it increased the phosphorylation of AKT and ERK. MPO was rapidly bound to and internalized by A549 cells, retaining its enzymatic activity. Furthermore, MPO partially translocated into the nucleus and was detected in the chromatin-enriched fraction. Effects of MPO on cancer cell function could be reduced when MPO uptake was blocked with heparin or upon inhibition of the enzymatic activity with the MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH). Lastly, we have shown that tumour-bearing mice treated with 4-ABAH had reduced tumour burden when compared to control mice. Our results highlight the role of MPO as a neutrophil-derived enzyme that can alter the function of lung cancer cells.

5.
Front Immunol ; 13: 997115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700219

RESUMO

Cannabinoid (CB) receptors (CB1 and CB2) are expressed on cancer cells and their expression influences carcinogenesis in various tumor entities. Cells of the tumor microenvironment (TME) also express CB receptors, however, their role in tumor development is still unclear. We, therefore, investigated the role of TME-derived CB1 and CB2 receptors in a model of non-small cell lung cancer (NSCLC). Leukocytes in the TME of mouse and human NSCLC express CB receptors, with CB2 showing higher expression than CB1. In the tumor model, using CB1- (CB1 -/-) and CB2-knockout (CB2 -/-) mice, only deficiency of CB2, but not of CB1, resulted in reduction of tumor burden vs. wild type (WT) littermates. This was accompanied by increased accumulation and tumoricidal activity of CD8+ T and natural killer cells, as well as increased expression of programmed death-1 (PD-1) and its ligand on lymphoid and myeloid cells, respectively. CB2 -/- mice responded significantly better to anti-PD-1 therapy than WT mice. The treatment further increased infiltration of cytotoxic lymphocytes into the TME of CB2 -/- mice. Our findings demonstrate that TME-derived CB2 dictates the immune cell recruitment into tumors and the responsiveness to anti-PD-1 therapy in a model of NSCLC. CB2 could serve as an adjuvant target for immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor CB2 de Canabinoide , Animais , Humanos , Camundongos , Carcinogênese , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Microambiente Tumoral , Camundongos Knockout , Receptor CB2 de Canabinoide/genética
6.
Front Immunol ; 12: 703846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484199

RESUMO

Neutrophils have been described as a phenotypically heterogeneous cell type that possess both pro- and anti-tumor properties. Recently, a subset of neutrophils isolated from the peripheral blood mononuclear cell (PBMC) fraction has been described in cancer patients. These low-density neutrophils (LDNs) show a heterogeneous maturation state and have been associated with pro-tumor properties in comparison to mature, high-density neutrophils (HDNs). However, additional studies are necessary to characterize this cell population. Here we show new surface markers that allow us to discriminate between LDNs and HDNs in non-small cell lung cancer (NSCLC) patients and assess their potential as diagnostic/prognostic tool. LDNs were highly enriched in NSCLC patients (median=20.4%, range 0.3-76.1%; n=26) but not in healthy individuals (median=0.3%, range 0.1-3.9%; n=14). Using a high-dimensional human cell surface marker screen, we identified 12 surface markers that were downregulated in LDNs when compared to HDNs, while 41 surface markers were upregulated in the LDN subset. Using flow cytometry, we confirmed overexpression of CD36, CD41, CD61 and CD226 in the LDN fraction. In summary, our data support the notion that LDNs are a unique neutrophil population and provide novel targets to clarify their role in tumor progression and their potential as diagnostic and therapeutic tool.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Citometria de Fluxo , Neoplasias Pulmonares , Neutrófilos , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/sangue , Antígenos CD/imunologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/imunologia , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo
7.
Oncoimmunology ; 10(1): 1965319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527428

RESUMO

Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Linfócitos T CD8-Positivos , Camundongos , Monoacilglicerol Lipases/genética , Monoglicerídeos , Microambiente Tumoral
8.
Oncoimmunology ; 9(1): 1776059, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32923137

RESUMO

In many types of cancer, presence of eosinophils in tumors correlate with an improved disease outcome. In line with this, activated eosinophils have been shown to reduce tumor growth in colorectal cancer (CRC). Interleukin (IL)-33 has recently emerged as a cytokine that is able to inhibit the development of tumors through eosinophils and other cells of the tumor microenvironment thereby positively influencing disease progress. Here, we asked whether eosinophils are involved in the effects of IL-33 on tumor growth in CRC.In models of CT26 cell engraftment and colitis-associated CRC, tumor growth was reduced after IL-33 treatment. The growth reduction was absent in eosinophil-deficient ΔdblGATA-1 mice but was restored by adoptive transfer of ex vivo-activated eosinophils indicating that the antitumor effect of IL-33 depends on the presence of eosinophils. In vitro, IL-33 increased the expression of markers of activation and homing in eosinophils, such as CD11b and Siglec-F, and the degranulation markers CD63 and CD107a. Increased expression of Siglec-F, CD11b and CD107a was also seen in vivo in eosinophils after IL-33 treatment. Viability and cytotoxic potential of eosinophils and their migration properties toward CCL24 were enhanced indicating direct effects of IL-33 on eosinophils. IL-33 treatment led to increased levels of IL-5 and CCL24 in tumors.Our data show that the presence of eosinophils is mandatory for IL-33-induced tumor reduction in models of CRC and that the mechanisms include eosinophil recruitment, activation and degranulation. Our findings also emphasize the potential use of IL-33 as an adjuvants in CRC immunotherapy. Abbreviations: AOM: azoxymethane; bmRPMI: bone marrow RPMI; CRC: colorectal cancer; CFSE: carboxyfluorescein succinimidyl ester; DSS: dextran sulfate sodium; EPX: eosinophil peroxidase; INF-γ: interferon gamma; ILC: innate lymphoid cell; IL-33: interleukin-33; IL-5: interleukin-5; MDSC: myeloid derived suppressor cells; NK cells: natural killer cells; P/S: penicillin/streptomycin; rm: recombinant mouse; T regs: regulatory T cells; TATE: tumor associated tissue eosinophilia; TNF-α: tumor necrosis factor alpha.


Assuntos
Neoplasias Colorretais , Eosinófilos , Interleucina-33 , Animais , Neoplasias Colorretais/tratamento farmacológico , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...