Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727347

RESUMO

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Assuntos
Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Interferons/farmacologia , Espaço Intracelular/metabolismo , Proteínas de Membrana/genética , Mutação , Vírus de RNA/classificação , Vírus de RNA/metabolismo , Especificidade da Espécie , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Replicação Viral
2.
J Biol Chem ; 295(21): 7327-7340, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32291285

RESUMO

Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.


Assuntos
Antígenos CD/biossíntese , Regulação para Baixo , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Liberação de Vírus , Antígenos CD/genética , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Células HEK293 , HIV-1/genética , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...