Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Malar J ; 22(1): 286, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759213

RESUMO

BACKGROUND: Larval Source Management (LSM) is an important tool for malaria vector control and is recommended by WHO as a supplementary vector control measure. LSM has contributed in many successful attempts to eliminate the disease across the Globe. However, this approach is typically labour-intensive, largely due to the difficulties in locating and mapping potential malarial mosquito breeding sites. Previous studies have demonstrated the potential for drone imaging technology to map malaria vector breeding sites. However, key questions remain unanswered related to the use and cost of this technology within operational vector control. METHODS: Using Zanzibar (United Republic of Tanzania) as a demonstration site, a protocol was collaboratively designed that employs drones and smartphones for supporting operational LSM, termed the Spatial Intelligence System (SIS). SIS was evaluated over a four-month LSM programme by comparing key mapping accuracy indicators and relative costs (both mapping costs and intervention costs) against conventional ground-based methods. Additionally, malaria case incidence was compared between the SIS and conventional study areas, including an estimation of the incremental cost-effectiveness of switching from conventional to SIS larviciding. RESULTS: The results demonstrate that the SIS approach is significantly more accurate than a conventional approach for mapping potential breeding sites: mean % correct per site: SIS = 60% (95% CI 32-88%, p = 0.02), conventional = 18% (95% CI - 3-39%). Whilst SIS cost more in the start-up phase, overall annualized costs were similar to the conventional approach, with a simulated cost per person protected per year of $3.69 ($0.32 to $15.12) for conventional and $3.94 ($0.342 to $16.27) for SIS larviciding. The main economic benefits were reduced labour costs associated with SIS in the pre-intervention baseline mapping of habitats. There was no difference in malaria case incidence between the three arms. Cost effectiveness analysis showed that SIS is likely to provide similar health benefits at similar costs compared to the conventional arm. CONCLUSIONS: The use of drones and smartphones provides an improved means of mapping breeding sites for use in operational LSM. Furthermore, deploying this technology does not appear to be more costly than a conventional ground-based approach and, as such, may represent an important tool for Malaria Control Programmes that plan to implement LSM.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/prevenção & controle , Mosquitos Vetores , Smartphone , Dispositivos Aéreos não Tripulados , Larva , Tecnologia
2.
Malar J ; 20(1): 184, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853632

RESUMO

BACKGROUND: Application methods of |Attractive Toxic Sugar Baits (ATSB) need to be improved for wide-scale use, and effects on non-target organisms (NTOs) must be assessed. The goals of this study were to determine, at the village level, the effect of different configurations of bait stations to (1) achieve < 25% Anopheles mosquito vector daily feeding rate for both males and females and (2) minimize the effect on non-target organisms. METHODS: Dye was added to Attractive Sugar Bait Stations (without toxin) to mark mosquitoes feeding on the baits, and CDC UV light traps were used to monitor for marked mosquitoes. An array of different traps were used to catch dye marked NTOs, indicating feeding on the ASB. Stations were hung on homes (1, 2, or 3 per home to optimize density) at different heights (1.0 m or 1.8 m above the ground). Eight villages were chosen as for the experiments. RESULTS: The use of one ASB station per house did not mark enough mosquitoes. Use of two and three stations per house gave feeding rates above the 25% goal. There was no statistical difference in the percentage of marked mosquitoes between two and three stations, however, the catches using two and three bait stations were both significantly higher than using one. There was no difference in An. gambiae s.l. feeding when stations were hung at 1.0 and 1.8 m. At 1.8 m stations sustained less accidental damage. ASB stations 1.8 m above ground were fed on by three of seven monitored insect orders. The monitored orders were: Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Neuroptera and Orthoptera. Using one or two stations significantly reduced percentage of bait-fed NTOs compared to three stations which had the highest feeding rates. Percentages were as follows: 6.84 ± 2.03% Brachycera followed by wasps (Hymenoptera: Vespidae) 5.32 ± 2.27%, and Rhopalocera 2.22 ± 1.79%. Hanging the optimal number of stations per house for catching mosquitoes (two) at 1.8 m above ground, limited the groups of non-targets to Brachycera, Chironomidae, Noctuoidea, Rhopalocera, parasitic wasps and wasps (Hymenoptera). Feeding at 1.8 m only occurred when stations were damaged. CONCLUSIONS: The goal of marking quarter of the total Anopheles population per day was obtained using 2 bait stations at 1.8 m height above the ground. This configuration also had minimal effects on non-target insects.


Assuntos
Anopheles , Malária/prevenção & controle , Controle de Mosquitos , Plasmodium/efeitos dos fármacos , Açúcares , Animais , Feminino , Insetos/efeitos dos fármacos , Malária/transmissão , Masculino , Mali , Controle de Mosquitos/métodos
3.
PLoS One ; 16(3): e0248538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33735241

RESUMO

BACKGROUND: Pyriproxyfen (PPF), an insect growth hormone mimic is widely used as a larvicide and in some second-generation bed nets, where it is combined with pyrethroids to improve impact. It has also been evaluated as a candidate for auto-dissemination by adult mosquitoes to control Aedes and Anopheles species. We examined whether PPF added to larval habitats of pyrethroid-resistant malaria vectors can modulate levels of resistance among emergent adult mosquitoes. METHODOLOGY: Third-instar larvae of pyrethroid-resistant Anopheles arabiensis (both laboratory-reared and field-collected) were reared in different PPF concentrations, between 1×10-9 milligrams active ingredient per litre of water (mgAI/L) and 1×10-4 mgAI/L, or no PPF at all. Emergent adults escaping these sub-lethal exposures were tested using WHO-standard susceptibility assays on pyrethroids (0.75% permethrin and 0.05% deltamethrin), carbamates (0.1% bendiocarb) and organochlorides (4% DDT). Biochemical basis of pyrethroid resistance was investigated by pre-exposure to 4% PBO. Bio-efficacies of long-lasting insecticide-treated nets, Olyset® and PermaNet 2.0 were also examined against adult mosquitoes with or without previous aquatic exposure to PPF. RESULTS: Addition of sub-lethal doses of PPF to larval habitats of pyrethroid-resistant An. arabiensis, consistently resulted in significantly reduced mortalities of emergent adults when exposed to pyrethroids, but not to bendiocarb or DDT. Mortality rates after exposure to Olyset® nets, but not PermaNet 2.0 were also reduced following aquatic exposures to PPF. Pre-exposure to PBO followed by permethrin or deltamethrin resulted in significant increases in mortality, compared to either insecticide alone. CONCLUSIONS: Partially-resistant mosquitoes exposed to sub-lethal aquatic concentrations of PPF may become more resistant to pyrethroids than they already are without such pre-exposures. Studies should be conducted to examine whether field applications of PPF, either by larviciding or other means actually exacerbates pyrethroid-resistance in areas where signs of such resistance already exist in wild the vector populations. The studies should also investigate mechanisms underlying such magnification of resistance, and how this may impact the potential of PPF-based interventions in areas with pyrethroid resistance.


Assuntos
Anopheles/efeitos dos fármacos , Malária/prevenção & controle , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Piridinas/administração & dosagem , Animais , Anopheles/parasitologia , Anopheles/fisiologia , DDT/farmacologia , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Malária/parasitologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Fenilcarbamatos/farmacologia , Água
4.
Malar J ; 19(1): 418, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218346

RESUMO

BACKGROUND: Host preference is a critical determinant of human exposure to vector-borne infections and the impact of vector control interventions. Widespread use of long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) across sub-Saharan Africa, which protect humans against mosquitoes, may select for altered host preference traits of malaria vectors over the long term. Here, the host preferences of Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) were experimentally assessed in the field, using direct host-preference assays in two distinct ecological settings in Tanzania. METHODS: Eight Ifakara Tent Trap (ITT), four baited with humans and four with bovine calves, were simultaneously used to catch malaria vectors in open field sites in urban and rural Tanzania. The numbers of mosquitoes collected in human-baited traps versus calf-baited traps were used to estimate human feeding preference for each site's vector species. RESULTS: The estimated proportion [95% confidence interval (CI)] of mosquitoes attacking humans rather than cattle was 0.60 [0.40, 0.77] for An. arabiensis in the rural setting and 0.61 [0.32, 0.85] for An. gambiae s.s. in the urban setting, indicating no preference for either host in both cases (P = 0.32 and 0.46, respectively) and no difference in preference between the two (Odds Ratio (OR) [95%] = 0.95 [0.30, 3.01], P = 0.924). However, only a quarter of An. arabiensis in the urban setting attacked humans (0.25 [0.09, 0.53]), indicating a preference for cattle that approached significance (P = 0.08). Indeed, urban An. arabiensis were less likely to attack humans rather than cattle when compared to the same species in the rural setting (OR [95%] = 0.21 [0.05, 0.91], P = 0.037). CONCLUSION: Urban An. arabiensis had a stronger preference for cattle than the rural population and urban An. gambiae s.s. showed no clear preference for either humans or cattle. In the urban setting, both species exhibited stronger tendencies to attack cattle than previous studies of the same species in rural contexts. Cattle keeping may, therefore, particularly limit the impact of human-targeted vector control interventions in Dar es Salaam and perhaps in other African towns and cities.


Assuntos
Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Animais , Comportamento Alimentar , Humanos , Mordeduras e Picadas de Insetos/epidemiologia , Malária/transmissão , Tanzânia/epidemiologia , População Urbana/estatística & dados numéricos
5.
Malar J ; 19(1): 72, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059671

RESUMO

BACKGROUND: The aim of this field trial was to evaluate the efficacy of attractive toxic sugar baits (ATSB) in Mali, where sustained malaria transmission occurs despite the use of long-lasting insecticidal nets (LLINs). ATSB bait stations were deployed in seven of 14 similar study villages, where LLINs were already in widespread use. The combined use of ATSB and LLINs was tested to see if it would substantially reduce parasite transmission by Anopheles gambiae sensu lato beyond use of LLINs alone. METHODS: A 2-day field experiment was conducted to determine the number of mosquitoes feeding on natural sugar versus those feeding on bait stations containing attractive sugar bait without toxin (ASB)-but with food dye. This was done each month in seven random villages from April to December 2016. In the following year, in seven treatment villages from May to December 2017, two ATSB bait stations containing the insecticide dinotefuran were placed on the outer walls of each building. Vector population density was evaluated monthly by CDC UV light traps, malaise traps, pyrethrum spray (PSCs) and human landing catches (HLCs). Female samples of the catch were tested for age by examination of the ovarioles in dissected ovaries and identification of Plasmodium falciparum sporozoite infection by ELISA. Entomological inoculation rates (EIR) were calculated, and reductions between treated and untreated villages were determined. RESULTS: In the 2-day experiment with ASB each month, there was a lower number of male and female mosquitoes feeding on the natural sugar sources than on the ASB. ATSB deployment reduced CDC-UV trap female catches in September, when catches were highest, were by 57.4% compared to catches in control sites. Similarly, malaise trap catches showed a 44.3% reduction of females in August and PSC catches of females were reduced by 48.7% in September. Reductions of females in HLCs were lower by 19.8% indoors and 26.3% outdoors in September. The high reduction seen in the rainy season was similar for males and reductions in population density for both males and females were > 70% during the dry season. Reductions of females with ≥ 3 gonotrophic cycles were recorded every month amounting to 97.1% in October and 100.0% in December. Reductions in monthly EIRs ranged from 77.76 to 100.00% indoors and 84.95% to 100.00% outdoors. The number of sporozoite infected females from traps was reduced by 97.83% at treated villages compared to controls. CONCLUSIONS: Attractive toxic sugar baits used against Anopheles mosquitoes in Mali drastically reduced the density of mosquitoes, the number of older females, the number of sporozoite infected females and the EIR demonstrating how ATSB significantly reduces malaria parasite transmission.


Assuntos
Anopheles , Guanidinas , Inseticidas , Controle de Mosquitos , Neonicotinoides , Nitrocompostos , Açúcares , Animais , Feminino , Mali
6.
Cochrane Database Syst Rev ; 8: CD012736, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31425624

RESUMO

BACKGROUND: Larviciding refers to the regular application of chemical or microbial insecticides to water bodies or water containers to kill the aquatic immature forms of the mosquito (the larvae and pupae). OBJECTIVES: To summarize research evidence evaluating whether larviciding with chemical or microbial insecticides prevents malaria transmission. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; CAB Abstracts; LILACS; the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP); ClinicalTrials.gov; and the ISRCTN registry up to 6 June 2019. SELECTION CRITERIA: We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), randomized cross-over studies, non-randomized cross-over studies, and controlled before-and-after studies (CBAs) that compared larviciding with no larviciding. DATA COLLECTION AND ANALYSIS: We independently assessed trials for eligibility and risk of bias, and extracted data. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS: Four studies (one cRCT, two CBAs, and one non-randomized cross-over design) met the inclusion criteria. All used ground application of larvicides (people hand-delivering larvicides); one evaluated chemical and three evaluated microbial agents. Studies were carried out in The Gambia, Tanzania, Kenya, and Sri Lanka. Three studies were conducted in areas where mosquito aquatic habitats were less extensive (< 1 km²), and one where habitats were more extensive (> 1 km²; a cross-over study from The Gambia).For aquatic habitats of less than 1 km², one cRCT randomized eight villages in Sri Lanka to evaluate chemical larviciding using insect growth regulator; and two CBA studies undertaken in Kenya and Tanzania evaluated microbial larvicides. In the cRCT, larviciding across all villages was associated with lower malaria incidence (rate ratio 0.24, 4649 participants, low-certainty evidence) and parasite prevalence (risk ratio (RR) 0.26, 5897 participants, low-certainty evidence) compared to no larviciding. The two CBA studies reported lower malaria prevalence during the intervention period (parasite prevalence RR 0.79, 95% confidence interval (CI) 0.71 to 0.89; 70,902 participants; low-certainty evidence). The Kenyan study also reported a reduction in the incidence of new malaria cases (RR 0.62, 95% CI 0.38 to 1.01; 720 participants; very low-certainty evidence).For aquatic habitats of more than 1 km², the non-randomized cross-over trial using microbial larvicides did not detect an effect for malaria incidence (RR 1.58, 95% CI 0.94 to 2.65; 4226 participants), or parasite prevalence (RR 1.15, 95% CI 0.41 to 3.20; 3547 participants); both were very low-certainty evidence. The Gambia trial also reported the mean haemoglobin level, and there was no difference across the four comparisons (mean difference -0.13, 95% CI -0.40 to 0.13; 3586 participants).We were unable to summarize or pool entomological outcomes due to unreported and missing data. AUTHORS' CONCLUSIONS: Most controlled studies on larviciding have been performed with microbial agents. Ground larviciding for non-extensive larval habitats may have an effect on malaria transmission, and we do not know if there is an effect in large-scale aquatic habitats. We found no studies using larviciding application techniques that could cover large aquatic habitats, such as aerial spraying using aircraft.


Assuntos
Reservatórios de Doenças/parasitologia , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Culicidae , Ecossistema , Humanos , Análise de Séries Temporais Interrompida , Larva/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos
7.
Malar J ; 18(1): 166, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072359

RESUMO

BACKGROUND: Autodissemination of pyriproxyfen (PPF), i.e. co-opting adult female mosquitoes to transfer the insect growth regulator, pyriproxyfen (PPF) to their aquatic habitats has been demonstrated for Aedes and Anopheles mosquitoes. This approach, could potentially enable high coverage of aquatic mosquito habitats, including those hard to locate or reach via conventional larviciding. This study demonstrated impacts of autodissemination in crashing a stable and self-sustaining population of the malaria vector, Anopheles arabiensis under semi-field conditions in Tanzania. METHODS: Self-propagating populations of An. arabiensis were established inside large semi-field cages. Larvae fed on naturally occurring food in 20 aquatic habitats in two study chambers (9.6 × 9.6 m each), while emerging adults fed on tethered cattle. The mosquito population was monitored using emergence traps and human landing catches, each time returning captured adults into the chambers. Once the population was stable (after 23 filial generations), PPF dissemination devices (i.e. four clay pots each treated with 0.2-0.3 g PPF) were introduced into one of the chambers (treatment) and their impact monitored in parallel with untreated chamber (control). RESULTS: Daily adult emergence was similar between control and treatment chambers, with average (± SE) of 14.22 ± 0.70 and 12.62 ± 0.74 mosquitoes/trap, respectively, before treatment. Three months post-treatment, mean number of adult An. arabiensis emerging from the habitats was 5.22 ± 0.42 in control and 0.14 ± 0.04 in treatment chambers. This was equivalent to > 97% suppression in treatment chamber without re-treatment of the clay pots. Similarly, the number of mosquitoes attempting to bite volunteers inside the treatment chamber decreased to zero, 6 months post-exposure (i.e. 100% suppression). In contrast, biting rates in control rose to 53.75 ± 3.07 per volunteer over the same period. CONCLUSION: These findings demonstrate effective suppression of stable populations of malaria vectors using a small number of simple autodissemination devices, from which adult mosquitoes propagated pyriproxyfen to contaminate aquatic habitats in the system. This is the first proof that autodissemination can amplify treatment coverage and deplete malaria vector populations. Field trials are necessary to validate these results, and assess impact of autodissemination as a complementary malaria intervention.


Assuntos
Anopheles/fisiologia , Ecossistema , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Piridinas/farmacologia , Animais , Comportamento Animal , Feminino , Inseticidas , Larva/efeitos dos fármacos , Dinâmica Populacional , Tanzânia , Água
8.
Parasit Vectors ; 10(1): 29, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088225

RESUMO

BACKGROUND: There is a growing awareness that if we are to achieve the ambitious goal of malaria elimination, we must compliment indoor-based vector control interventions (such as bednets and indoor spraying) with outdoor-based interventions such as larval source management (LSM). The effectiveness of LSM is limited by our capacity to identify and map mosquito aquatic habitats. This study provides a proof of concept for the use of a low-cost (< $1000) drone (DJI Phantom) for mapping water bodies in seven sites across Zanzibar including natural water bodies, irrigated and non-irrigated rice paddies, peri-urban and urban locations. RESULTS: With flying times of less than 30 min for each site, high-resolution (7 cm) georeferenced images were successfully generated for each of the seven sites, covering areas up to 30 ha. Water bodies were readily identifiable in the imagery, as well as ancillary information for planning LSM activities (access routes to water bodies by road and foot) and public health management (e.g. identification of drinking water sources, mapping individual households and the nature of their construction). CONCLUSION: The drone-based surveys carried out in this study provide a low-cost and flexible solution to mapping water bodies for operational dissemination of LSM initiatives in mosquito vector-borne disease elimination campaigns. Generated orthomosaics can also be used to provide vital information for other public health planning activities.


Assuntos
Culicidae/fisiologia , Ecossistema , Mapeamento Geográfico , Malária/transmissão , Distribuição Animal , Animais , Humanos , Insetos Vetores , Controle de Mosquitos/métodos
9.
Malar J ; 15(1): 564, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27876050

RESUMO

BACKGROUND: Subsistence rice farmers in south-eastern Tanzania are often migratory, spending weeks or months tending to crops in distant fields along the river valleys and living in improvised structures known as Shamba huts, not fully protected from mosquitoes. These farmers also experience poor access to organized preventive and curative services due to long distances. Mosquito biting exposure in these rice fields, relative to main village residences was assessed, then a portable mosquito-proof hut was developed and tested for protecting these migratory farmers. METHODS: Pair-wise mosquito surveys were conducted in four villages in Ulanga district, south-eastern Tanzania in 20 randomly-selected Shamba huts located in the distant rice fields and in 20 matched houses within the main villages, to assess biting densities and Plasmodium infection rates. A portable mosquito-proof hut was designed and tested in semi-field and field settings against Shamba hut replicas, and actual Shamba huts. Also, semi-structured interviews were conducted, timed-participant observations, and focus-group discussions to assess experiences and behaviours of the farmers regarding mosquito-bites and the mosquito-proof huts. RESULTS: There were equal numbers of mosquitoes in Shamba huts and main houses [RR (95% CI) 27 (25.1-31.2), and RR (95% CI) 30 (27.5-33.4)], respectively (P > 0.05). Huts having >1 occupant had more mosquitoes than those with just one occupant, regardless of site [RR (95% CI) 1.57 (1.30-1.9), P < 0.05]. Open eaves [RR (95% CI) 1.15 (1.08-1.23), P < 0.05] and absence of window shutters [RR (95% CI) 2.10 (1.91-2.31), P < 0.05] increased catches of malaria vectors. All Anopheles mosquitoes caught were negative for Plasmodium. Common night-time outdoor activities in the fields included cooking, eating, fetching water or firewood, washing dishes, bathing, and storytelling, mostly between 6 and 11 p.m., when mosquitoes were also biting most. The prototype hut provided 100% protection in semi-field and field settings, while blood-fed mosquitoes were recaptured in Shamba huts, even when occupants used permethrin-impregnated bed nets. CONCLUSION: Though equal numbers of mosquitoes were caught between main houses and normal Shamba huts, the higher proportions of blood-fed mosquitoes, reduced access to organized healthcare and reduced effectiveness of LLINs, may increase vulnerability of the itinerant farmers. The portable mosquito-proof hut offered sufficient protection against disease-transmitting mosquitoes. Such huts could be improved to expand protection for migratory farmers and possibly other disenfranchised communities.


Assuntos
Anopheles/parasitologia , Fazendeiros , Mordeduras e Picadas de Insetos/epidemiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Controle de Mosquitos/métodos , Plasmodium/isolamento & purificação , Migrantes , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Medição de Risco , População Rural , Tanzânia , Adulto Jovem
10.
PLoS One ; 11(7): e0159067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27392083

RESUMO

BACKGROUND: Marking wild mosquitoes is important for understanding their ecology, behaviours and role in disease transmission. Traditional insect marking techniques include using fluorescent dyes, protein labels, radioactive labels and tags, but such techniques have various limitations; notably low marker retention and inability to mark wild mosquitoes at source. Stable isotopes are gaining wide spread use for non-invasive marking of arthropods, permitting greater understanding of mosquito dispersal and responses to interventions. We describe here a simple technique for marking naturally-breeding malaria and dengue vectors using stable isotopes of nitrogen (15N) and carbon (13C), and describe potential field applications. METHODS: We created man-made aquatic mosquito habitats and added either 15N-labelled potassium nitrate or 13C-labelled glucose, leaving non-adulterated habitats as controls. We then allowed wild mosquitoes to lay eggs in these habitats and monitored their development in situ. Pupae were collected promptly as they appeared and kept in netting cages. Emergent adults (in pools of ~4 mosquitoes/pool) and individually stored pupae were desiccated and analysed using Isotope Ratio Mass Spectrometry (IRMS). FINDINGS: Anopheles gambiae s.l and Aedes spp. from enriched 13C and enriched 15N larval habitats had significantly higher isotopic levels than controls (P = 0.005), and both isotopes produced sufficient distinction between marked and unmarked mosquitoes. Mean δ15N for enriched females and males were 275.6±65.1 and 248.0±54.6, while mean δ15N in controls were 2.1±0.1 and 3.9±1.7 respectively. Similarly, mean δ13C for enriched females and males were 36.08±5.28 and 38.5±6.86, compared to -4.3±0.2 and -7.9±3.6 in controls respectively. Mean δ15N and δ13C was significantly higher in any pool containing at least one enriched mosquito compared to pools with all unenriched mosquitoes, P<0.001. In all cases, there were variations in standardized isotopic ratios between mosquito species. CONCLUSION: Enrichment of semi-natural mosquito larval habitats with stable isotopes of nitrogen and carbon resulted in effective marking of Anopheles and Aedes mosquitoes colonizing these habitats. This approach can significantly enhance studies on mosquito eco-physiology, dispersal, pathogen transmission and responses to control measures.


Assuntos
Aedes/fisiologia , Sistemas de Identificação Animal/métodos , Anopheles/fisiologia , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Aedes/química , Animais , Anopheles/química , Cruzamento , Ecossistema , Feminino , Masculino , Tanzânia
11.
Malar J ; 15(1): 288, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27216734

RESUMO

BACKGROUND: In the Tanzanian city of Dar es Salaam, high coverage of long-lasting insecticidal nets (LLINs), larvicide application (LA) and mosquito-proofed housing, was complemented with improved access to artemisinin-based combination therapy and rapid diagnostic tests by the end of 2012. METHODS: Three rounds of city-wide, cluster-sampled cross-sectional surveys of malaria parasite infection status, spanning 2010 to 2012, were complemented by two series of high-resolution, longitudinal surveys of vector density. RESULTS: Larvicide application using a granule formulation of Bacillus thuringiensis var. israelensis (Bti) had no effect upon either vector density (P = 0.820) or infection prevalence (P = 0.325) when managed by a private-sector contractor. Infection prevalence rebounded back to 13.8 % in 2010, compared with <2 % at the end of a previous Bti LA evaluation in 2008. Following transition to management by the Ministry of Health and Social Welfare (MoHSW), LA consistently reduced vector densities, first using the same Bti granule in early 2011 [odds ratio (OR) (95 % confidence interval (CI)) = 0.31 (0.14, 0.71), P = 0.0053] and then a pre-diluted aqueous suspension formulation from mid 2011 onwards [OR (95 % CI) = 0.15 (0.07, 0.30), P â‰ª 0.000001]. While LA by MoHSW with the granule formulation was associated with reduced infection prevalence [OR (95 % CI) = 0.26 (0.12, 0.56), P = 0.00040], subsequent liquid suspension use, following a mass distribution to achieve universal coverage of LLINs that reduced vector density [OR (95 % CI) = 0.72 (0.51, 1.01), P = 0.057] and prevalence [OR (95 % CI) = 0.80 (0.69, 0.91), P = 0.0013], was not associated with further prevalence reduction (P = 0.836). Sleeping inside houses with complete window screens only reduced infection risk [OR (95 % CI) = 0.71 (0.62, 0.82), P = 0.0000036] if the evenings and mornings were also spent indoors. Furthermore, infection risk was only associated with local vector density [OR (95 % CI) = 6.99 (1.12, 43.7) at one vector mosquito per trap per night, P = 0.037] among the minority (14 %) of households lacking screening. Despite attenuation of malaria transmission and immunity, 88 % of infected residents experienced no recent fever, only 0.4 % of these afebrile cases had been treated for malaria, and prevalence remained high (9.9 %) at the end of the study. CONCLUSIONS: While existing vector control interventions have dramatically attenuated malaria transmission in Dar es Salaam, further scale-up and additional measures to protect against mosquito bites outdoors are desirable. Accelerated elimination of chronic human infections persisting at high prevalence will require active, population-wide campaigns with curative drugs.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Controle de Mosquitos/métodos , Adolescente , Adulto , África/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Malária Falciparum/transmissão , Masculino , Pessoa de Meia-Idade , Prevalência , Tanzânia/epidemiologia , Adulto Jovem
12.
Source Code Biol Med ; 11: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022408

RESUMO

BACKGROUND: Standardized schemas, databases, and public data repositories are needed for the studies of malaria vectors that encompass a remarkably diverse array of designs and rapidly generate large data volumes, often in resource-limited tropical settings lacking specialized software or informatics support. RESULTS: Data from the majority of mosquito studies conformed to a generic schema, with data collection forms recording the experimental design, sorting of collections, details of sample pooling or subdivision, and additional observations. Generically applicable forms with standardized attribute definitions enabled rigorous, consistent data and sample management with generic software and minimal expertise. Forms use now includes 20 experiments, 8 projects, and 15 users at 3 research and control institutes in 3 African countries, resulting in 11 peer-reviewed publications. CONCLUSION: We have designed generic data schema that can be used to develop paper or electronic based data collection forms depending on the availability of resources. We have developed paper-based data collection forms that can be used to collect data from majority of entomological studies across multiple study areas using standardized data formats. Data recorded on these forms with standardized formats can be entered and linked with any relational database software. These informatics tools are recommended because they ensure that medical entomologists save time, improve data quality, and data collected and shared across multiple studies is in standardized formats hence increasing research outputs.

13.
PLoS One ; 10(7): e0131835, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186730

RESUMO

BACKGROUND: Large-cage experiments indicate pyriproxifen (PPF) can be transferred from resting sites to aquatic habitats by Anopheles arabiensis--malaria vector mosquitoes to inhibit emergence of their own offspring. PPF coverage is amplified twice: (1) partial coverage of resting sites with PPF contamination results in far higher contamination coverage of adult mosquitoes because they are mobile and use numerous resting sites per gonotrophic cycle, and (2) even greater contamination coverage of aquatic habitats results from accumulation of PPF from multiple oviposition events. METHODS AND FINDINGS: Deterministic mathematical models are described that use only field-measurable input parameters and capture the biological processes that mediate PPF autodissemination. Recent successes in large cages can be rationalized, and the plausibility of success under full field conditions can be evaluated a priori. The model also defines measurable properties of PPF delivery prototypes that may be optimized under controlled experimental conditions to maximize chances of success in full field trials. The most obvious flaw in this model is the endogenous relationship that inevitably occurs between the larval habitat coverage and the measured rate of oviposition into those habitats if the target mosquito species is used to mediate PPF transfer. However, this inconsistency also illustrates the potential advantages of using a different, non-target mosquito species for contamination at selected resting sites that shares the same aquatic habitats as the primary target. For autodissemination interventions to eliminate malaria transmission or vector populations during the dry season window of opportunity will require comprehensive contamination of the most challenging subset of aquatic habitats [Formula: see text] that persist or retain PPF activity (Ux) for only one week [Formula: see text], where Ux = 7 days). To achieve >99% contamination coverage of these habitats will necessitate values for the product of the proportional coverage of the ovipositing mosquito population with PPF contamination (CM) by the ovitrap-detectable rates of oviposition by wild mosquitoes into this subset of habitats [Formula: see text], divided by the titre of contaminated mosquitoes required to render them unproductive [Formula: see text], that approximately approach unity [Formula: see text]. CONCLUSIONS: The simple multiplicative relationship between CM and [Formula: see text], and the simple exponential decay effect they have upon uncontaminated aquatic habitats, allows application of this model by theoreticians and field biologists alike.


Assuntos
Anopheles/fisiologia , Agentes de Controle Biológico/química , Insetos Vetores/fisiologia , Controle de Mosquitos , Piridinas/química , Distribuição Animal , Animais , Simulação por Computador , Ecossistema , Humanos , Malária/transmissão , Oviposição
14.
Malar J ; 13: 331, 2014 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-25150840

RESUMO

BACKGROUND: In order to sustain the gains achieved by current malaria control strategies, robust surveillance systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria transmission in hyperendemic transmission settings in Tanzania. METHODS: The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five consecutive years (2008-2012). Seventy-two houses were selected per village and each house was sampled for mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to insecticides was assessed using WHO guidelines. RESULTS: A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24% were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2% were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of 78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin (77%) and lambda cyhalothrin (42%) in 2014. CONCLUSION: The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these vector species, in order to preserve the efficacy of LLINs.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Insetos Vetores , Malária/transmissão , Animais , Anopheles/classificação , Antígenos de Protozoários/análise , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Monitoramento Epidemiológico , Humanos , Resistência a Inseticidas , Malária/epidemiologia , Plasmodium/genética , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase , População Rural , Esporozoítos/crescimento & desenvolvimento , Tanzânia/epidemiologia
15.
Malar J ; 13: 161, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24779515

RESUMO

BACKGROUND: Malaria vector control strategies that target adult female mosquitoes are challenged by the emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats (i.e. autodissemination of PPF). METHODS: A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 - 0.3 g AI PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence was determined by comparing treatment with an appropriate control group. RESULTS: Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001). In experiments where no mosquitoes introduced, there were no significant differences between control and treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e. that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage amplification of the autodissemination event. CONCLUSION: The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for the testing of this technique in field trials.


Assuntos
Anopheles/efeitos dos fármacos , Ecossistema , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Piridinas/farmacologia , Animais , Feminino , Tanzânia
16.
PLoS One ; 9(3): e90657, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594705

RESUMO

We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210). Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/metabolismo , Piretrinas/metabolismo , Envelhecimento , Animais , Anopheles/química , Anopheles/fisiologia , Feminino , Resistência a Inseticidas , Espectroscopia de Luz Próxima ao Infravermelho/métodos
17.
Am J Trop Med Hyg ; 90(5): 852-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24639296

RESUMO

One of the main challenges to malaria elimination is the resilience of vectors, such as Anopheles arabiensis, that evade lethal exposure to insecticidal control measures or express resistance to their active ingredients. This study investigated a novel technology for population control that sterilizes mosquitoes using pyriproxyfen, a juvenile hormone analogue. Females of An. arabiensis were released in a semifield system divided into four equal sections, and each section had a mud hut sheltering a tethered cow providing a blood source for mosquitoes. In all sections, the inner mud hut walls and roofs were lined with black cotton cloth. In one-half of the sections, the cloth was dusted with pyriproxyfen. An overwhelming 96% reduction in adult production was achieved in pyriproxyfen-treated sections compared with control sections. This unprecedented level of control can be exploited to design new vector control strategies that particularly target existing behaviorally resilient and insecticide-resistant populations.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Piridinas/farmacologia , Animais , Bovinos , Feminino , Infertilidade/induzido quimicamente
18.
Parasit Vectors ; 6: 343, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314005

RESUMO

BACKGROUND: The emergence of pyrethroid resistance in the malaria vector, Anopheles arabiensis, threatens to undermine the considerable gains made towards eliminating malaria on Zanzibar. Previously, resistance was restricted to the island of Pemba while mosquitoes from Unguja, the larger of the two islands of Zanzibar, were susceptible. Here, we characterised the mechanism(s) responsible for resistance on Zanzibar using a combination of gene expression and target-site mutation assays. METHODS: WHO resistance bioassays were conducted using 1-5d old adult Anopheles gambiae s.l. collected between 2011 and 2013 across the archipelago. Synergist assays with the P450 inhibitor piperonyl-butoxide were performed in 2013. Members of the An. gambiae complex were PCR-identified and screened for target-site mutations (kdr and Ace-1). Gene expression in pyrethroid resistant An. arabiensis from Pemba was analysed using whole-genome microarrays. RESULTS: Pyrethroid resistance is now present across the entire Zanzibar archipelago. Survival to the pyrethroid lambda-cyhalothrin in bioassays conducted in 2013 was 23.5-54.3% on Unguja and 32.9-81.7% on Pemba. We present evidence that resistance is mediated, in part at least, by elevated P450 monoxygenases. Whole-genome microarray scans showed that the most enriched gene terms in resistant An. arabiensis from Pemba were associated with P450 activity and synergist assays with PBO completely restored susceptibility to pyrethroids in both islands. CYP4G16 was the most consistently over-expressed gene in resistant mosquitoes compared with two susceptible strains from Unguja and Dar es Salaam. Expression of this P450 is enriched in the abdomen and it is thought to play a role in hydrocarbon synthesis. Microarray and qPCR detected several additional genes putatively involved in this pathway enriched in the Pemba pyrethroid resistant population and we hypothesise that resistance may be, in part, related to alterations in the structure of the mosquito cuticle. None of the kdr target-site mutations, associated with pyrethroid/DDT resistance in An. gambiae elsewhere in Africa, were found on the islands. CONCLUSION: The consequences of this resistance phenotype are discussed in relation to future vector control strategies on Zanzibar to support the ongoing malaria elimination efforts on the islands.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Demografia , Regulação Enzimológica da Expressão Gênica , Tanzânia
19.
Parasit Vectors ; 6: 144, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23683439

RESUMO

BACKGROUND: Insecticide resistance poses a major threat to current vector control campaigns. Insecticides with novel modes of action are therefore in high demand. Pyriproxyfen (PPF), a conventional mosquito pupacide, has a unique mode of action that also sterilises adult mosquitoes (unable to produce viable offspring) upon direct contact. However, the timing of PPF exposure in relation to when mosquitoes take a blood meal has an important impact on that sterilisation. This study investigated the relationship between different blood feeding and PPF exposure timings to determine the potential of PPF sterilisation in controlling Anopheles arabiensis. METHODS: Four treatment regimens were investigated: blood fed three days before PPF exposure (A), blood fed one day before PPF exposure (B), blood fed one day after PPF exposure (C) and blood fed three days after PPF exposure (D) for their impact on egg laying (fecundity) and the production of viable offspring (fertility), while the impact of PPF exposure on mosquito survival was investigated in the absence of a blood meal. All regimens and the survival study exposed mosquitoes to PPF via the bottle assay at 3 mg AI/m(2) for 30 minutes. RESULTS: Female mosquitoes that blood-fed one day prior to PPF exposure (regimen B), produced no viable offspring during that gonotrophic cycle (100% reduction in fertility). All other treatments had no significant effect. The observed reductions in fecundity and fertility were caused by the retention of eggs (97% of eggs retained, i.e. produced in the ovaries but not laid, in regimen B, p = 0.0004). Some of these retained eggs were deformed in shape. PPF exposure on mosquito survival in the absence of a blood meal was found to have no effect. CONCLUSIONS: The results presented here suggest that sterilising adult malaria vectors using PPF could form part of a malaria control strategy, taking advantage of the lack of reported resistance to PPF in mosquitoes and its unique mode of action. We propose that targeting resting mosquitoes, which are highly susceptible to PPF at low doses, is the optimal direction for developing this control tool.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Piridinas/farmacologia , Animais , Anopheles/fisiologia , Comportamento Alimentar , Feminino , Humanos , Análise de Sobrevida , Fatores de Tempo
20.
Parasit Vectors ; 6: 57, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23497471

RESUMO

BACKGROUND: The suppression of indoor malaria transmission requires additional interventions that complement the use of insecticide treated nets (ITNs) and indoor residual spraying (IRS). Previous studies have examined the impact of house structure on malaria transmission in areas of low transmission. This study was conducted in a high transmission setting and presents further evidence about the association between specific house characteristics and the abundance of endophilic malaria vectors. METHODS: Mosquitoes were sampled using CDC light traps from 72 randomly selected houses in two villages on a monthly basis from 2008 to 2011 in rural Southern Tanzania. Generalized linear models using Poisson distributions were used to analyze the association of house characteristics (eave gaps, wall types, roof types, number of windows, rooms and doors, window screens, house size), number of occupants and ITN usage with mean catches of malaria vectors (An.gambiae s.l. and An. funestus). RESULTS: A total of 36490 female An. gambiae s.l. were collected in Namwawala village and 21266 in Idete village. As for An. funestus females, 2268 were collected in Namwawala and 3398 in Idete. Individually, each house factor had a statistically significant impact (p < 0.05) on the mean catches for An. gambiae s.l. but not An. funestus. A multivariate analysis indicated that the combined absence or presence of eaves, treated or untreated bed-nets, the number of house occupants, house size, netting over windows, and roof type were significantly related (p < 0.05) to An.gambiae s.l. and An. funestus house entry in both villages. CONCLUSIONS: Despite significant reductions in vector density and malaria transmission caused by high coverage of ITNs, high numbers of host-seeking malaria vectors are still found indoors due to house designs that favour mosquito entry. In addition to ITNs and IRS, significant efforts should focus on improving house design to prevent mosquito entry and eliminate indoor malaria transmission.


Assuntos
Anopheles/fisiologia , Habitação , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Malária/transmissão , Controle de Mosquitos/métodos , Aerossóis , Animais , Anopheles/efeitos dos fármacos , Feminino , Humanos , Insetos Vetores/efeitos dos fármacos , Inseticidas/administração & dosagem , Malária/parasitologia , Malária/prevenção & controle , Densidade Demográfica , Fatores de Risco , População Rural , Tanzânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...