Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 8154523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387251

RESUMO

A technology known as data analytics is a massively parallel processing approach that may be used to forecast a wide range of illnesses. Many scientific research methodologies have the problem of requiring a significant amount of time and processing effort, which has a negative impact on the overall performance of the system. Virtual screening (VS) is a drug discovery approach that makes use of big data techniques and is based on the concept of virtual screening. This approach is utilised for the development of novel drugs, and it is a time-consuming procedure that includes the docking of ligands in several databases in order to build the protein receptor. The proposed work is divided into two modules: image processing-based cancer segmentation and analysis using extracted features using big data analytics, and cancer segmentation and analysis using extracted features using image processing. This statistical approach is critical in the development of new drugs for the treatment of liver cancer. Machine learning methods were utilised in the prediction of liver cancer, including the MapReduce and Mahout algorithms, which were used to prefilter the set of ligand filaments before they were used in the prediction of liver cancer. This work proposes the SMRF algorithm, an improved scalable random forest algorithm built on the MapReduce foundation. Using a computer cluster or cloud computing environment, this new method categorises massive datasets. With SMRF, small amounts of data are processed and optimised over a large number of computers, allowing for the highest possible throughput. When compared to the standard random forest method, the testing findings reveal that the SMRF algorithm exhibits the same level of accuracy deterioration but exhibits superior overall performance. The accuracy range of 80 percent using the performance metrics analysis is included in the actual formulation of the medicine that is utilised for liver cancer prediction in this study.


Assuntos
Ciência de Dados , Neoplasias Hepáticas , Algoritmos , Computação em Nuvem , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...