Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 6661191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095308

RESUMO

The recent COVID-19 pandemic has impacted nearly the whole world due to its high morbidity and mortality rate. Thus, scientists around the globe are working to find potent drugs and designing an effective vaccine against COVID-19. Phytochemicals from medicinal plants are known to have a long history for the treatment of various pathogens and infections; thus, keeping this in mind, this study was performed to explore the potential of different phytochemicals as candidate inhibitors of the HR1 domain in SARS-CoV-2 spike protein by using computer-aided drug discovery methods. Initially, the pharmacological assessment was performed to study the drug-likeness properties of the phytochemicals for their safe human administration. Suitable compounds were subjected to molecular docking to screen strongly binding phytochemicals with HR1 while the stability of ligand binding was analyzed using molecular dynamics simulations. Quantum computation-based density functional theory (DFT) analysis was constituted to analyze the reactivity of these compounds with the receptor. Through analysis, 108 phytochemicals passed the pharmacological assessment and upon docking of these 108 phytochemicals, 36 were screened passing a threshold of -8.5 kcal/mol. After analyzing stability and reactivity, 5 phytochemicals, i.e., SilybinC, Isopomiferin, Lycopene, SilydianinB, and Silydianin are identified as novel and potent candidates for the inhibition of HR1 domain in SARS-CoV-2 spike protein. Based on these results, it is concluded that these compounds can play an important role in the design and development of a drug against COVID-19, after an exhaustive in vitro and in vivo examination of these compounds, in future.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , COVID-19/virologia , Teoria da Densidade Funcional , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Domínios Proteicos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação
2.
Biomed Res Int ; 2020: 6237160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102585

RESUMO

Coronaviruses have been reported previously due to their association with the severe acute respiratory syndrome (SARS). After SARS, these viruses were known to be causing Middle East respiratory syndrome (MERS) and caused 35% evanescence amid victims pursuing remedial care. Nowadays, beta coronaviruses, members of Coronaviridae, family order Nidovirales, have become subjects of great importance due to their latest pandemic originating from Wuhan, China. The virus named as human-SARS-like coronavirus-2 contains four structural as well as sixteen nonstructural proteins encoded by single-stranded ribonucleic acid of positive polarity. As there is no vaccine available to treat the infection caused by these viruses, there is a dire need for taking necessary steps against this virus. Herein, we have targeted two nonstructural proteins of SARS-CoV-2, namely, methyltransferase (nsp16) and helicase (nsp13), respectively, due to their substantial activity in viral pathogenesis. A total of 2035 compounds were analyzed for their pharmacokinetics and pharmacological properties. The screened 108 compounds were docked against both targeted proteins and were compared with previously reported known compounds. Compounds with high binding affinity were analyzed for their reactivity through DFT analysis, and binding was analyzed using molecular dynamics simulations. Through the analyses performed in this study, it is concluded that EryvarinM, Silydianin, Osajin, and Raddeanine can be considered potential inhibitors for MTase, while TomentodiplaconeB, Osajin, Sesquiterpene Glycoside, Rhamnetin, and Silydianin for helicase after these compounds are validated thoroughly using in vitro and in vivo protocols.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/farmacologia , Antimetabólitos/química , Antimetabólitos/farmacologia , Antivirais/química , COVID-19/epidemiologia , COVID-19/virologia , China/epidemiologia , Dioxolanos/química , Dioxolanos/farmacologia , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Humanos , Metiltransferases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Nelfinavir/química , Nelfinavir/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Conformação Proteica , RNA Helicases/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
3.
Braz. J. Pharm. Sci. (Online) ; 56: e17420, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142490

RESUMO

Dengue fever has emerged as a big threat to human health since the last decade owing to high morbidity with considerable mortalities. The proposed study aims at the in silico investigation of the inhibitory action against DENV4-NS1 of phytochemicals from two local medicinal plants of Pakistan. Non-Structural Protein 1 of Dengue Virus 4 (DENV4-NS1) is known to be involved in the replication and maturation of viron in the host cells. A total of 129 phytochemicals (50 from Tanacetum parthenium and 79 from Silybum marianum) were selected for this study. The tertiary structure of DENV4-NS1 was predicted based on homology modelling using Modeller 9.18 and the structural stability was evaluated using molecular dynamics simulations. Absorption, distribution, metabolism, excretion and toxicity (ADMET) along with the drug-likeness was also predicted for these phytochemicals using SwissADME and PreADMET servers. The results of ADMET and drug-likeness predictions exhibited that 54 phytochemicals i.e. 25 from Tanacetum parthenium and 29 from Silybum marianum showed effective druglikeness. These phytochemicals were docked against DENV4-NS1 using AutoDock Vina and 18 most suitable phytochemicals with binding affinities ≤ -6.0 kcal/mol were selected as potential inhibitors for DENV4-NS1. Proposed study also exploits the novel inhibitory action of Jaceidin, Centaureidin, Artecanin, Secotanaparthenolide, Artematin, Schizolaenone B, Isopomiferin, 6, 8-Diprenyleriodictyol, and Anthraxin against dengue virus. It is concluded that the screened 18 phytochemicals have strong inhibition potential against Dengue Virus 4.


Assuntos
Simulação por Computador , Proteínas/classificação , Dengue , Vírus da Dengue , Compostos Fitoquímicos/análise , Plantas Medicinais/metabolismo , Farmacocinética , Tanacetum parthenium/efeitos adversos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...