Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 454(7201): 204-8, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18615082

RESUMO

Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. One approach is to exploit the stress dependence of seismic wave velocity, and we have investigated this in an active source cross-well experiment at the San Andreas Fault Observatory at Depth (SAFOD) drill site. Here we show that stress changes are indeed measurable using this technique. Over a two-month period, we observed an excellent anti-correlation between changes in the time required for a shear wave to travel through the rock along a fixed pathway (a few microseconds) and variations in barometric pressure. We also observed two large excursions in the travel-time data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.

2.
J Acoust Soc Am ; 113(6): 3012-23, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12822772

RESUMO

Elastic wave scattering off a layer containing a single set of vertical periodic fractures is examined using a numerical technique based on the work of Hennion et al. [J. Acoust. Soc. Am. 87, 1861-1870 (1990)]. This technique combines the finite element method and plane wave method to simulate three-dimensional scattering off a two-dimensional fractured layer structure. Each fracture is modeled explicitly, so that the model can simulate both discrete arrivals of scattered waves from individual fractures and multiply scattered waves between the fractures. Using this technique, we examine changes in scattering characteristics of plane elastic waves as a function of wave frequency, angle of incidence, and fracture properties such as fracture stiffness, height, and regular and irregular spacing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA